• Title/Summary/Keyword: shoot density

Search Result 202, Processing Time 0.036 seconds

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

Weed Control Efficacy and Growth of Pear Tree according to Several Weed Control Method in Pear Orchard (배 과원에서 잡초방제 방법에 따른 제초효과와 배나무생육)

  • Jang, Il;Kim, Hyang Mi;Park, Yong Seog;Lee, Jeong Deug;Kim, Sung Min;Choi, Jin Ho;Lee, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This study was conducted to clarify effects of weed control methods on damages from agricultural chemicals of pear trees, growth of weeds and states of pear trees after treating pear orchards with different methods of weed controlling, density of GLU and application times. The growth and occupation rate were investigated after 10, 20 and 40 days of weeding treatment. According to a result of the first treatment conducted when weeds in the lower parts of crown in a pear orchard began to grow and grew about 20 cm, unwoven cloth covering showed the highest control value with 100% in all 14 kinds of grasses. In comparison, Stellaria aquatica and catchweed bedstraw showed 96.7% and 97.3% respectively in the 20 DAT investigate after the first treatment of GLU 540 g a.i. ha-1 and the high control value of 100% in other all kinds of grasses. According to an investigation of stalk enlargement, length of new shoot and the number of new shoot made to know differences in tree growth following treatment of the lower part of crown, to use weed killers two or three times a year or to eliminate grasses with machines have positive effects on cross growth of pear trees.

Nitrogen fixation, and growth characteristics of Three Legume cover crops in no-tillage paddy field

  • Cho, Young-Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.308-315
    • /
    • 2003
  • A field experiment was conducted to investigate the performance of three legume species in a zero-tillage, non-fertilized rice field in a temperate zone. Before the experiment for 5 years, from 1995 to 1999, plant growth patterns of three legume species grown as over-wintering (October-May) cover crops on a paddy field were maintained to study N balance and $\textrm{N}_2$ fixation. Decrease in plant density accelerated from after winter to flowering from 1,090, 320, and 5 to 732, 232, and 6 plants $\textrm{m}^{-2}$ in Chinese milk vetch (CMV), white clover (WC), and hairy vetch (HV), respectively. Total dry weights of plants above-ground level were 0.05, 0.11, and 2.43 g $\textrm{plant}^{-1}$. in WC, CMV and HV respectively but steeply increased at ripening up to 0.77, 2.33, and 26 g $\textrm{plant}^{-1}$. The root dry weight of HV and CMV rapidly increased while in WC, root dry weight increased slightly towards flowering. The highest nodule numbers were recorded in CMV to April thereafter WC produced the highest. Nodule size was distributed within 7mm in CMV but it was larger in HV varying from 1 to 10mm. Shoot N (g $\textrm{m}^{-2}$) greatly increased from over-wintering to flowering in CMV, HV and WC and it ranged from 1.66, 0.5 and 1.92 to 12.6, 3.1 and 13.02 g $\textrm{m}^{-2}$, respectively. After wintering, the initial shoot N content (%) was more in CMV. Root N content (%) was constant or slightly decreased in HV and WC. Soil total N in the control plot (clean fallow) was the highest on Mar. 2 then decreased rapidly to flowering. Soil N content was constant in HV plots whereas it was low in WC plots for the entire growth period except just after winter. Maximum nitrogenase activities were 9, 37.8, and 131 mol $\textrm{C}_2\textrm{H}_4$ $\textrm{plant}^{-1}$ $\textrm{hour}^{-1}$. in CMV, HV, and WC, respectively. Nitrogenase activity showed a direct correlation with nodule number, size and fresh weight. As a cover crop preceding a rice crop, CMV is more suited to colder regions due to its earlier ripening characteristics. Hairy vetch and WC are recommended for regions with a mild winter and a long summer owing to their late ripening and great N fixation activity.

Recommendation of Nitrogen Topdressing Rates at Panicle Initiation Stage of Rice Using Canopy Reflectance

  • Nguyen, Hung T.;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.141-150
    • /
    • 2008
  • The response of grain yield(GY) and milled-rice protein content(PC) to crop growth status and nitrogen(N) rates at panicle initiation stage(PIS) is critical information for prescribing topdress N rate at PIS(Npi) for target GY and PC. Three split-split-plot experiments including various N treatments and rice cultivars were conducted in Experimental Farm, Seoul National University, Korea in 2003-2005. Shoot N density(SND, g N in shoot $m^{-2}$) and canopy reflectance were measured before N application at PIS, and GY, PC, and SND were measured at harvest. Data from the first two years(2003-2004) were used for calibrating the predictive models for GY, PC, and SND accumulated from PIS to harvest using SND at PIS and Npi by multiple stepwise regression. After that the calibrated models were used for calculating N requirement at PIS for each of nine plots based on the target PC of 6.8% and the values of SND at PIS that was estimated by canopy reflectance method in the 2005 experiment. The result showed that SND at PIS in combination with Npi were successful to predict GY, PC, and SND from PIS to harvest in the calibration dataset with the coefficients of determination ($R^2$) of 0.87, 0.73, and 0.82 and the relative errors in prediction(REP, %) of 5.5, 4.3, and 21.1%, respectively. In general, the calibrated model equations showed a little lower performance in calculating GY, PC, and SND in the validation dataset(data from 2005) but REP ranging from 3.3% for PC and 13.9% for SND accumulated from PIS to harvest was acceptable. Nitrogen rate prescription treatment(PRT) for the target PC of 6.8% reduced the coefficient of variation in PC from 4.6% in the fixed rate treatment(FRT, 3.6g N $m^{-2}$) to 2.4% in PRT and the average PC of PRT was 6.78%, being very close to the target PC of 6.8%. In addition, PRT increased GY by 42.1 $gm^{-2}$ while Npi increased by 0.63 $gm^{-2}$ compared to the FRT, resulting in high agronomic N-use efficiency of 68.8 kg grain from additional kg N. The high agronomic N-use efficiency might have resulted from the higher response of grain yield to the applied N in the prescribed N rate treatment because N rate was prescribed based on the crop growth and N status of each plot.

  • PDF

Effects of Application Method of GA4+7+BA on Tree Growth and Fruit Characteristics of 'Gala' Apple (GA4+7+BA의 처리방법이 사과 '갈라' 품종의 수체생장 및 과실특성에 미치는 영향)

  • SaGong, Dong-Hoon;Yoon, Tae-Myung;Choi, Seak-Won
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.552-560
    • /
    • 2010
  • $GA_{4+7}$+BA, a plant growth regulator for induction of feathering in young apple tree and increasing fruit size, was applied by various methods on 'Gala'/M.9 apple trees in high density orchard for 4 years to investigate its effect on fruit and shoot growth. $GA_{4+7}$+BA($80-300mg{\cdot}L^{-1}$) increased fruit length, fruit weight, and L/D ratio regardless of application methods, but it did not affect soluble solid content, acidity, leaf area, and chlorophyll. Seed number was not affected by $GA_{4+7}$+BA application, however, more immature seeds was observed in treated 'Gala' fruit. Shoot growth was increased when spraying $GA_{4+7}$+BA at tree crown but not affected when spraying at fruit directly. More significant fruit growth was observed when $GA_{4+7}$+BA was applied on the fruits between late of May and early of June when fruit cell division ended; however, high concentration of $GA_{4+7}$+BA resulted in lower fruit storability because of lower firmness. Hence, more attention should be paid when applying high concentration of $GA_{4+7}$+BA to small sized fruit cultivars like 'Gala'.

Agrobacterium-Mediated Genetic Transformation of Pepper for the Development of Blight Resistant Cultivar (고추의 역병 저항성 품종 개발을 위하여 Agrobacterium tumefaciens를 이용한 elicitin 유전자 도입)

  • Kwon, Tae-Ryong;Lee, Moon-Jung;Han, Jung-Sul;Shin, Dong-Hyun;Oh, Jung-Youl;Kim, Kyung-Min;Kim, Chang-Kil
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.55-59
    • /
    • 2007
  • The study was carried out to develop transformants resisting to Phyophthora blight disease in the domestic pepper cultivar Subicho. In transforming of syn600 promoter with elicitin gene using Agrobacterium (LBA4404/pBI101 syn600-syn${\alpha}$-elicitin) to cotyledons of pepper, rate of shoot formation in 'Subicho' was 11.1% in medium containing 3 mg/L zeatin and 0.05 mg/L NAA, and also 12.8% in medium containing combination of 4 mg/L zeatin and 0.05 mg/L MAA. For PCR reaction using elicitin gene primer of transformants regenerated from cotyledons, we detected a specific band of 536 bp, and also showed strong signal at position of 536 bp in accordance with NPTII gene used as probe in Southern blot. Transformants pepper shown resistance to blight fungus was inoculated to seedlings of the $T_{1}\;and\;T_{2}$ transformants by concentration (density: zoo spore $10^{3}/mL$).

Utilizing chromosome segment substitution lines (CSSLs) to evaluate developmental plasticity of root systems in hardpan penetration and deep rooting triggered by soil moisture fluctuations in rice

  • Nguyen, Thi Ngoc Dinh;Suralta, Roel R.;Mana, Kano-Nakata;Mitsuya, Shiro;Stella, Owusu Nketia;Kabuki, Takuya;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.321-321
    • /
    • 2017
  • Water availability in rainfed lowlands (RFL) is strongly affected by climate change. In RFL, rice plants are exposed to soil moisture fluctuations (SMF) but rarely to simple progressive drought as widely believed. Typical RFL field is characterized by a about 5-cm thick high bulk density hardpan layer underneath the cultivated layer at about 20 cm depth that impedes deep root development. Root system has the ability to develop in response to changes in SMF, known as phenotypic plasticity. We hypothesized that genotypes that can adapt to RFL have root plasticity. The roots can sharply respond to re-wetting after drought period and thus penetrate the hardpan layer when the hardpan is wet and so becomes relatively soft, and thus access water under the hardpan. This study aimed to identify CSSLs derived from a cross between Sasanishiki and Habataki which adapted to such RFL conditions. We used 39 CSSLs together with the parent Sasanishiki, which were grown in hydroponics and pot under transient soil moisture stresses (drought and then rewatering), and compared with continuously well-watered (WW) (control) up to 14 days after sowing (DAS), and 20 DAS, respectively. Based on the results of hydroponics and pot experiments, we selected a few lines, which were grown in the soil-filled rootbox with artificial hardpan layer and without artificial hardpan. For the rootbox without artificial hardpan, plants were grown under WW and transient soil moisture stresses for 49 DAS. While the rootbox with artificial hardpan, the plants were grown under WW (control) and SMF (WW up to 21 DAS, 1st drought (22-36 DAS), rewatering (37-44 DAS), and followed by 2nd drought (45-58 DAS)). Among the 39 CSSLs, only CSSL439 (SL39) consistently showed significantly higher shoot dry weight (SDW) than Sasanishiki under transient soil moisture stress conditions as well as SMF conditions in all the experiments. Furthermore, under WW, SL39 consistently showed no significant differences from Sasanishiki in shoot and root growth in most of traits examined. SL39 showed significantly greater total root length (TRL) than Sasanishiki under transient soil moisture stress, which is considered as phenotypic plasticity in response to rewatering after drought period. Such plastic root development was the key trait that effectively contributed to root elongation and branching during the rewatering period and consequently enhanced the root to penetrate hardpan layer when the soil penetration resistance at hardpan layer reduced. In addition, using the rootbox with artificial hardpan layer ($1.7g\;cm^{-3}$, heavily compacted), SL39 showed greater root system development than Sasanishiki under SMF, which was expressed in its significantly higher TRL, total nodal RL, and total lateral RL at hardpan layer as well as at below the hardpan layer. These results prove that SL39 has plasticity that enables its root systems to penetrate hardpan layer in response to rewatering. Under SMF, such root plasticity contributed to its higher gs and Pn.

  • PDF

Cloning and Characterization of Homeodomain-Zip Gene, Phc5 in Embryogenic Callus derived from Pimpinella brachycarpa Suspension Cultured Cells (참나물 현탁배양세포 유래 배발생캘러스에서 HD-Zip 유전자, Phc5의 클로닝과 특성)

  • 손수인;김준철
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • Calli were induced from the petiole explants of Pimpinella brachycarpa on MS medium supplemented with 0.5 mg/L 2,4-D and 0.1 mg/L BA after four weeks of culture. Compact clusters of small and dense cells among these calli were selected and suspension-cultured as the source of embryogenic calli. When transferred to MS medium with 0.1 mg/L NAA, the suspension-cultured cells grew to embryogenic callus. Somatic embryos derived from these embryogenic calli developed into plantlets. The cDNA library was constructed in the embryogenic callus and in order to screen the cDNA library, these cDNAs were plated at a density 1.5 $\times$ 10^5 plaques per 15 cm petridish. Among 19 clones showing preferential hybridization with petiole HD-Zip gene, five clones were obtained after second screening. Four clones among them, were highly homologous to P. brachycarpa shoot-tip Phz4 gene, but one clone, Phc5 was about 1.5 kb which has an extra 163 bp to 5' upstream of Phz4. The Phc5 was 1,531 bp containing poly A tails of 18 bases. ATG start codon for Phc5, was located at position 284 with an open reading frame of 906 by which encodes a polypeptide of 302 amino acids. The Phc5 protein revealed that the polypeptides between 135 and 195 contain a homeodomain as the `leucine zipper' motif.

  • PDF

Effects of Photoperiod, Light Intensity and Electrical Conductivity on the Growth and Yield of Quinoa (Chenopodium quinoa Willd.) in a Closed-type Plant Factory System

  • Austin, Jirapa;Jeon, Youn A;Cha, Mi-Kyung;Park, Sookuk;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.405-413
    • /
    • 2016
  • Quinoa (Chenopodium quinoa Willd.) is a plant native to the Andean region that has become increasing popular as a food source due to its high nutritional content. This study determined the optimal photoperiod, light intensity, and electrical conductivity (EC) of the nutrient solution for growth and yield of quinoa in a closed-type plant factory system. The photoperiod effects were first analyzed in a growth chamber using three different light cycles, 8/16, 14/10, and 16/8 hours (day/night). Further studies, performed in a closed-type plant factory system, evaluated nutrient solutions with EC (salinity) levels of 1.0, 2.0 or $3.0dS{\cdot}m^{-1}$. These experiments were assayed with two light intensities (120 and $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) under a 12/12 and 14/10 hours (day/night) photoperiod. The plants grown under the 16/8 hours photoperiod did not flower, suggesting that a long-day photoperiod delays flowering and that quinoa is a short-day plant. Under a 12/12 h photoperiod, the best shoot yield (both fresh and dry weights) was observed at an EC of $2.0dS{\cdot}m^{-1}$ and a photosynthetic photon flux density (PPFD) of $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. With a 14/10 h photoperiod, the shoot yield (both fresh and dry weights), plant height, leaf area, and light use efficiency were higher when grown with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Overall, the optimal conditions for producing quinoa as a leafy vegetable, in a closed-type plant factory system, were a 16/8 h (day/night) photoperiod with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Growth of Creeping Bentgrass by Application of Compound Fertilizer Containing Microbes (미생물 함유 복합비료 시비에 따른 크리핑 벤트그래스의 생육)

  • Kim, Young-Sun;Lee, Chang-Eun;Ham, Soun-Kyu;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • Superintendents have been used microbial fertilizers to improve turfgrass growth and quality and to decrease turfgrass diseases in golf course. This study was conducted to investigate the effects of compound fertilizer containing microbe (MF) on the growth and quality of creeping bentgrass with turf color index (TCI), chlorophyll index (ChI), root length, turfgrass density, clipping yield and nutrient content. Treatments were designed as follows; non-fertilizer (NF), compound fertilizer (21-17-17; CF) as control, compound fertilizer (14-6-17) containing microbe. In pot experiment, TCI and ChI of creeping bentgrass in MF plot were similar to those in CF. But clipping dry weight of MF plot increased by 39.1% compared to that of CF plot. At field experiment applied with MF treatment, TCI, ChI, root length, and nutrient content and uptake of creeping bentgrass were similar to those with CF treatment, but turfgrass density with MF higher about 7.9-15.8% than with CF. These results indicated that the application of MF improved growth and quality of creeping bentgrass by enhancing clipping yield and shoot number.