DOI QR코드

DOI QR Code

Agrobacterium-Mediated Genetic Transformation of Pepper for the Development of Blight Resistant Cultivar

고추의 역병 저항성 품종 개발을 위하여 Agrobacterium tumefaciens를 이용한 elicitin 유전자 도입

  • Kwon, Tae-Ryong (Gyeoungbuk Agricutural Technology Administration) ;
  • Lee, Moon-Jung (Gyeoungbuk Agricutural Technology Administration) ;
  • Han, Jung-Sul (National Horticultural Research Institute, Rural Development Administration) ;
  • Shin, Dong-Hyun (Department of Agronomy, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Oh, Jung-Youl (Department of Horticulture, Sangju National University) ;
  • Kim, Kyung-Min (Department of Horticulture, Sangju National University) ;
  • Kim, Chang-Kil (Department of Horticulture, Sangju National University)
  • Published : 2007.03.31

Abstract

The study was carried out to develop transformants resisting to Phyophthora blight disease in the domestic pepper cultivar Subicho. In transforming of syn600 promoter with elicitin gene using Agrobacterium (LBA4404/pBI101 syn600-syn${\alpha}$-elicitin) to cotyledons of pepper, rate of shoot formation in 'Subicho' was 11.1% in medium containing 3 mg/L zeatin and 0.05 mg/L NAA, and also 12.8% in medium containing combination of 4 mg/L zeatin and 0.05 mg/L MAA. For PCR reaction using elicitin gene primer of transformants regenerated from cotyledons, we detected a specific band of 536 bp, and also showed strong signal at position of 536 bp in accordance with NPTII gene used as probe in Southern blot. Transformants pepper shown resistance to blight fungus was inoculated to seedlings of the $T_{1}\;and\;T_{2}$ transformants by concentration (density: zoo spore $10^{3}/mL$).

고추 형질전환은 Agrobacterium (LBA4404/pBI101 cyc600-syna-elicitin)을 이용한 cyc600 promoter에 구축된 elicitin 유전자의 형질전환시 shoot의 형성율은 수비초의 경우 3 mg/L zeatin과 0.05 mg/L NAA 함유 배지에서 11.1%, 4 mg/L zeatin과 0.05 mg/L NAA 함유 배지에서 12.8%였다. 전배양 3일, 공동배양 $3{\sim}4$일에서 재분화율이 높았다. 자엽으로부터 재분화된 형질전환체의 NPTII 유전자의 primer를 이용한 PCR 반응에서 형질전환된 재분화 식물체는 536 bp의 밴드를 확인하였다. Membrane에 blot하여 NPTII gene을 probe로 사용하여 Southern blot 분석에서 고추형질전환 식물체는 536 bp 부위에 강한 signal을 보였다. elicitin 유전자를 이용한 역병 저항성 형질전환체 수비초 $T_{0}$세대의 생육은 계통간에 다소 차이는 보였고, 계통 모두 생육은 저조한 반면 개화 및 수정 등의 임성은 정상적이었다. 자식을 통해 채종한 $T_{1}$ 식물체의 유전자 도입을 확인하기 위하여 PCR을 수행한 결과 $T_{0}$ 식물체 $S1{\sim}S5$ 계통에서 elicitin 밴드가 나타나 형질전환체임을 확인하였고, $T_{1}$식물체인 S1-1 등 7계통에서 elicitin 밴드가 나타났고, S1-2 등 4계통에서는 밴드가 나타나지 않아 형질전환체가 후대에서 분리가 일어남을 확인할 수 있었다. Syn ${\alpha}$ clone을 이용하여 Southern blot analysis를 한 결과 band가 나타난 300 bp 정도의 위치에서 blot이 나오는 것을 관찰할 수 있었다. 위의 결과에서 cyc600 promoter-syn ${\alpha}$의 construct가 수비초의 genomic DNA에 삽입되었는 것을 확인할 수 있었다. 고추형질전환체의 유묘에 역병균을 접종한 결과 유주포자 $10^{3}$개/mL에서 형질전환체의 저항성 계통선발이 가능하였다.

Keywords

References

  1. An G (1987) Binary Ti vector for plant transformation and promoter analysis. Methods in Enzymology 153: 292-305 https://doi.org/10.1016/0076-6879(87)53060-9
  2. Barksdale TH, Papavizas GS, Johnston SA (1984) Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. Plant Disease 68: 506-509 https://doi.org/10.1094/PD-69-506
  3. Dong C, Jiang C, Feng L (1995) Transgenic tomato and pepper plants containing CMV-sat-RNA CDNA. Acta Horticulture 402: 78-86
  4. Fari M, Czako M (1981) Relationship between position and morphogenetic response of pepper hypocotyl explant cultured in vitro. Scientia Horticulture 15: 207-213 https://doi.org/10.1016/0304-4238(81)90028-5
  5. Gil Ortega R, Palazon Espanol C, Cuartero Zueco J (1990) Genetics of resistance to Phytophthora capsici in the Mexican pepper 'Line 29'. Bulletin OEPP/EPPO Bulletin 20: 117-122 https://doi.org/10.1111/j.1365-2338.1990.tb01187.x
  6. Gil Ortega R, Palazon Espanol C, Cuartero Zueco J (1991) Genetics of resistance to Phytophthora capsici in the pepper line 'SCM-334'. Plant Breeding 107: 50-55 https://doi.org/10.1111/j.1439-0523.1991.tb00527.x
  7. Harrison BD, Mary MA, Baulcomble DC (1987) Virus restance in transgenic plant that express cucumber mosaic satellite RNA. Nature 328: 799-802 https://doi.org/10.1038/328799a0
  8. Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eichholt D, Rogers SC, Fraley RT (1985) A simple and general method from transferring genes into plants. Science 227: 1229-1231 https://doi.org/10.1126/science.227.4691.1229
  9. Kim SJ, Lee SJ, Kim BD, Paek KH (1997) Satellite-RNAmediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Report 16: 825-830 https://doi.org/10.1007/s002990050328
  10. Kimble KA, Grogan RG (1960) Resistance to pytophthora root rot in pepper. Plant Dis Rep 44: 872-873
  11. Lee SJ, Kim BD, Pack KH (1993) In vitro plant regeneration Agrobacterium- mediated transformation from cotyledone explants of hot pepper. Korean J Plant Tissue Culture 20: 289-294
  12. Lee YH, Kim HS, Kim JY, Jung M, Park YS, Lee JS, Choi SH, Her NH, Lee JH, Hyung NI, Lee CH, Yang SG, Harn CH (2004) A new selection method for pepper transformation: callus-mediated shoot formation. Plant Cell Reports 23: 50-58
  13. Lee SW (1999) Review of current gene transformation studies in pepper (Capsicum spp). J Kor Capsicum Res Coop 5: 57-66
  14. Leonian LH (1922) Stem and fruit blight of peppers caused by Phytophthora capsici sp. Nov Phytophthology 12: 401-408
  15. Li W, Parrott WA, Hildebranf DF, Collins GD, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Reports 9: 360-364
  16. Manoharan M, Sree Vidya CS, Lakshmi Sita G (1998) Agrobacterium -mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa jwala). Plant Sci 131: 77-83 https://doi.org/10.1016/S0168-9452(97)00231-8
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 5: 473-479
  18. Phillips GC, Hubstenberger JF (1985) Organogenesis in pepper tissue cultures. Plant Cell Tiss Org Cult 4: 261-269 https://doi.org/10.1007/BF00040200
  19. Powell-Abel P, Nelson RS, Hoffman BN, Rogers SG, Fraley RT, Beschy RN (1986) Delay of Disease development in transgenic plant that express the tobacco mosaic virus coat protein gene. Science 232: 758-743
  20. Ramirez-Malagon R, Ochoa-Alejo N (1996) An improved and reliable chili pepper (C. annuum L.) plant regeneration method. Plant Cell Report 16: 226-231 https://doi.org/10.1007/BF01890873
  21. Shah DM, Horsh RB, Kiee HH, Kishore GM, Winter JA, Tumer NE, Hiromaka CM, Sanders PR, Gusser CS, Aykent S, Siegal NR, Roger S, Franley RT (1986) Engineering herbicide tolerance in transgenic plant. Science 233: 478-481 https://doi.org/10.1126/science.233.4762.478
  22. Shivegowda ST, Mythli JB, Anand L, Saiprasad GVS (2002) In vitro regeneration and transformation in chili pepper (Capsicum annuum L.). J Horti Sci Biotech 77: 629-634 https://doi.org/10.1080/14620316.2002.11511549
  23. Smith PG, Kimble KA, Grogan RG, Millett AH (1967) Inheritance of resistance in pepper to phytophthora root rot. Phytophthology 57: 377-379
  24. Wang Y, Yang M, Pan N, Chen ZH (1991) Plant regeneration and transformation of sweet pepper (Capsicum frutescens). Acta Bot Sin 33: 780-786
  25. Yin S, Mei L, Newman J, Back K, Chappell J (1997) Regulation of sesquiterpene cyclase gene expression. Characterization of an elicitor- and pathogen-inducible promoter. Plant Physiol 115: 437-451 https://doi.org/10.1104/pp.115.2.437
  26. Zhu YX, Yang WJ, Zhang YF, Chen ZL (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16: 71-77 https://doi.org/10.1007/BF01275453

Cited by

  1. Gene flow from genetically modified to conventional chili pepper (Capsicum annuum L.) vol.176, pp.3, 2009, https://doi.org/10.1016/j.plantsci.2008.12.012