• Title/Summary/Keyword: shoot

Search Result 2,994, Processing Time 0.033 seconds

Effects of Refrigerated Storage Temperature and Duration on the Seedling Quality of Bare Root Plants and Container Seedlings of Quercus variabilis and Zelkova serrata (저장 온도 및 기간이 굴참나무와 느티나무 노지묘 및 용기묘의 묘목품질에 미치는 영향)

  • Cho, Min Seok;Yang, A-Ram;Noh, Nam Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.406-418
    • /
    • 2021
  • This study was conducted to evaluate optimal storage techniques for bare root plants and container seedlings of Quercus variabilis and Zelkova serrata in order to maintain high quality of seedlings until planting. Refrigerated storage treatments were given at two temperatures (-2℃ [freezing] and 2℃ [cooling]) for nine different durations (0, 15, 30, 60, 120, 180, 240, 300, and 360 days after storage). We analyzed total nonstructural carbohydrate (TNC) content and measured shoot moisture content (SMC) during the storage stage and survival rate (SR) and dry weight during the planting stage of seedlings. The TNC content and SMC of the seedlings of the two species decreased with an increase in storage duration. The TNC content of seedlings rapidly decreased after 180~240 days of storage. The TNC reduction rate in the freezing treatment was lower than that in the cooling treatment. Also, with an increase in the storage duration of the two species, the SMC reduction rate in the cooling treatment increased in comparison with that in the freezing treatment. In both the species, the SR after planting decreased rapidly after 60 days of cooling storage and 180 days of freezing storage, respectively. The SR after planting was less than 60% when the TNC content for both the species dropped below 20 mg g-1. In addition, the SR was lower than 80% when SMC measured before storage decreased by approximately 30% and 20% for Q. variabilis and Z. serrata, respectively. Our results suggest that cooling (1~2℃) storage is recommended for a short-term period (2 months or less), whereas freezing (-2~-4℃) storage is suitable for longer periods (2~6 months). These optimal storage techniques, allied with seedling harvesting and handling systems, will improve the quality of seedling production in nursery stages and increase seedling growth performances in plantations.

High Quality and High Yielding Rice Variety 'Cheongdam' Adaptable to Direct Seeding (고품질 다수성 직파재배적성 신품종 '청담벼')

  • Choi, Im-Soo;Kang, Kyung-Ho;Jeong, O-Young;Jeong, Eung-Gi;Cho, Young-Chan;Kim, Yeon-Gyu;Kim, Myeong-Ki;O, Myeong-Gyu;Choi, In-Bea;Jeon, Yong-Hee;Won, Young-Jae;Shin, Young-Seoup;Oh, In-seok
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.581-586
    • /
    • 2011
  • 'Cheongdam' is a japonica rice variety developed from a cross between SR19200-HB826-34, a line of good germination ability and shoot emergence at low temperature and Juanbyeo, good quality and direct-seeding adaptable cultivar by the rice breeding team of National Institute of Crop Science, RDA in 2006. This variety has 153 days of total growth duration from seeding to maturity in direct-seeding, and 160 days of growth duration from seeding to maturity in transplanting. This is erect plant type with culm length of 74 cm, thick culm, and green leaves. It has large panicle shape with 126 and 140 spikelets per panicle in direct-seeding and transplanting, respectively. Milled rice is transluscent and medium in grain size of non-glutinous endosperm. This variety is susceptible to leaf and neck blast, bacterial blight, stripe virus disease and brown planthopper. The yield potential of 'Cheongdam' is 5.84 MT/ha at ordinary transplanting culture and 5.62 MT/ha and 5.89 MT/ha at wet direct-seeding and dry direct-seeding cultures, respectively in the local adaptability test for three years. 'Cheongdam' would be adaptable to middle and southern plain of Korea for direct-seeding culture and transplanting rice culture.

Effects of Artificial CO2 Release in Soil on Chlorophyll Content and Growth of Pinus densiflora and Quercus variabilis Seedlings (토양 내 인위적인 이산화탄소 누출에 따른 소나무와 굴참나무 묘목의 엽록소 함량과 생장 반응)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.351-360
    • /
    • 2018
  • This study was conducted to analyze the responses of chlorophyll contents and growth of Pinus densiflora and Quercus variabilis seedlings on distance from the well and $CO_2$ flux after the artificial $CO_2$ release. From June 1 to 30, 2016, $CO_2$ gas was injected at the rate of $6L\;min^{-1}$ at the study site in Eumseong. Chlorophyll content was analyzed in the middle of July, 2016, and root collar diameter (RCD), height (H), and biomass were measured in May and December, 2016 after planting 2-year-old P. densiflora and 1-year-old Q. variabilis seedlings in May, 2015. The chlorophyll content of P. densiflora seedlings did not show a significant correlation with $CO_2$ flux, whereas the chlorophyll content of Q. variabilis seedlings showed a significant negative correlation with increasing $CO_2$ flux (P<0.05). The RCD and H growth rates of both species showed the significant difference in the distance from the well of the $CO_2$ anthropogenic release treatment. In particular, the RCD and H growth rate of P. densiflora seedlings and the RCD growth rate of Q. variabilis seedlings increased significantly as the seedlings were closer to the well, but the H growth rate of Q. variabilis seedlings decreased significantly. In addition, as the $CO_2$ concentration in the ground increases, ${\Delta}R/S$ ratio increases in both species, suggesting that the high $CO_2$ concentration in the soil promotes carbon distribution relative to the root part. The results of this study can be used as data necessary to monitor the $CO_2$ leakage and physiological and growth responses of both species to leakage of stored $CO_2$ in the future.

Optimum Seeding Date of Wet Hill Seeding on Puddled Soil after Weedy Rice Control in Southern Plain Area of South Korea (잡초성벼 경종적 방제 후 남부지역 벼 무논점파재배 파종적기)

  • Hwang, Woon-Ha;Jeong, Jae-Hyeok;Lee, Hyen-Seok;Yang, Seo-Yeong;Lee, Chung-Keun;Cho, Seung-Hyun;Min, Hyun-Kyung;Kim, Sang-Kuk;Han, Eun-Hui;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.273-281
    • /
    • 2018
  • Wet hill seeding (WHS) is one of the more famous labor and money saving methods technology used for rice cultivation. In WHS, rice standing percentage and weedy rice occurrence are the most important factors considered to secure a rice yield. We investigated the optimum seeding date of WHS in the Southern Plain area of South Korea. Weedy rice needed two weeks at $15^{\circ}C$ to show over 80% emergence. Germinated rice seed grown at $20^{\circ}C$ needed over for 10 days to achieve a shoot length over 3 cm. In field cultivation, the mean temperature for ten days after seeding showed a highly positive correlation with rice standing rate, spikelet number per square meter and yield index that favorably compared to machine transplanting. With these data, we suggest that the optimum seeding date of WHS that can secure over 98% of yield index of machine transplanting in Southern part of Korea is May. 21~Jun. 5 in Honam and May. 16~Jun. 5 in Yeongnam area.

Seedling Quality, and Early Growth and Fruit Productivity after Transplanting of Squash as Affected by Plug Cell Size and Seedling Raising Period (플러그 셀 크기와 육묘일수에 따른 애호박의 묘 소질, 정식 후 초기 생육 및 과실 생산성)

  • Kim, Yeong Sook;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • Abstract. This research was conducted to figure out the optimal size of the plug cell and seedling raising period in 'Nongwoo' and 'Nonghyeop' cultivars. In the first experiment on effect of plug cell size on growth of squash, seedlings were transplanted into hydroponic cultivation beds at different growing stages: Those in 32-cell trays with 3-4 true leaves at 25 days after sowing, those in 50-cell trays with 2 true leaves at 15 days after sowing, those in 105-cell trays just before a true leaf development, and those in 162-cell trays with only cotyledons at 8 days after sowing. In the second experiment on effect of seedling raising period on growth of squash, it was conducted to have different sowing dates. But the same transplanting date, based on the results of Experiment 1, and compared the differences in growth and fruit productivity as affected by plug cell size in the same way with experiment 1 including the cultivars and environmental conditions. After setting the transplanting date in advance, the number of days for sowing were calculated back for each treatment. In the first experiment, plant height was the greatest in 105-cell trays followed by 162, 50 and 32-cell trays in both cultivars. The best fruit quality was found in different treatments depending on the cultivars, although it was the lowest in 32-cell trays in both cultivars. The fruit quality was not significantly different among those from cell sizes. Therefore, when raising seedlings in 105-cell trays, the period of raising seedlings can be shortened as compared with the conventional 32-cell trays, and this change could reduce the workforce required for growing and transplanting seedlings. In the second experiment, after transplanting, shoot height and leaf width in the first measurement in both cultivars were greater in the 32-cell treatment. However, the last measurement after four weeks showed no significant difference in plant height, but significantly greatest leaf width in the smallest cell treatment, even as compared with that in 32-cell treatment. In case of 'Nongwoo', length and weight of the first harvested fruit showed the highest values in the treatment of 105-cell trays. In case of 'Nonghyeop' the 162-cell treatment along with the 105-cell treatment showed greatest length and weight of the first fruits. From these results, zucchini plug seedlings can be raised in plug trays with reduced cell sizes than the conventional 32-cell trays with improved fruit productivity.

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.

Basic Studies of Korean Native Clerodendron trichotomum Thunberg for Landscape Uses (전통식물 누리장나무의 조경용 소재개발을 위한 기초연구)

  • Han, In-Song;Ha, Yoo-Mi;Kim, Dong-Yeob;Lee, Bong-Ha
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.130-138
    • /
    • 2011
  • This study was carried out to investigate growth characteristics and propagation methods of Clerodendron trichotomum for landscape uses. The results are obtained as follows: In the first place, Korean native C. trichotomum was printed in the "Enumeration of plants in Chosun" in 1937 by Tae Hyun Chung. C. trichotomum is a shrub with round shape. This is noted for its late summer flowers, showy fruit and malodorous foliage. White flowers in long-peduncled cymes bloom in the upper leaf axils from late summer into fall. Flowers are followed by small bright blue fruits, each subtended by a fleshy red calyx. C. trichotomum showed high seed germination rate and greater shoot length in plug box than in normal seeding bed. The rooting rate of C. trichotomum according to cutting date was highest on July 7. The optimum date for cutting was on July 7~10 when the shoots were more hardened. Soil acidity ranged from pH 4.58 to 5.52. The most effective method for rooting of C. trichotomum was treatment with 1,000 ppm IBA on July 7 cuttings, which showed rooting rate of over 90%. Korean native C. trichotomum was successfully propagated through soft cutting and seed.

Changes of Leaf Characteristics, Pigment Content and Photosynthesis of Forsythia saxatilis under Two Different Light Intensities (광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil Nam;Byun, Jae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.609-615
    • /
    • 2011
  • Forsythia saxatilis is a Korean endemic plant designated as rare and endangered by the Korea Forest Service (KFS). Growth and physiological characteristics of F. saxatilis were investigated under two different light intensities in order to figure out an appropriate growth environment for conservation and restoration of the species in its natural habitat. Shoot length, leaf size and weight, photosynthetic pigment content and photosynthetic parameters were measured for F. saxatilis grown at two experimental plots under relative light intensities (RLI) of 20% and 60% of the full sun, respectively. Fresh leaf weight of plants grown under high relative light intensities (RLI-60) exceeded that of plants grown at 20% RLI. The ratio of fresh leaf weight to leaf size at RLI-60 was 1.47 times superior comparing to that recorded at RLI-20. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were higher in plants grown at RLI-60, whereas the ratio of total chlorophyll to carotenoid content was higher in the leaves at RLI-20. Photosynthetic rate, stomatal conductance and transpiration rate at RLI-60 were, respectively, 2.5, 2.65 and 1.79 times higher comparing to those recorded at RLI-20. Water use efficiency, however, was higher at RLI-20. The chlorophyll/nitrogen ratio was 1.83 times higher at RLI-20 than at RLI-60. In contrast, the ratio of net photosynthesis to chlorophyll content at RLI-60 was 2.58 times higher than that of RLI-20. In conclusion, light intensity might be the major factor affecting growth and physiological characteristics of F. saxatilis grown under canopy of tall tree species.

Optimizing In Vitro Propagation of Sophora koreensis Nakai using Statistical Analysis (다양한 통계분석 기법을 이용한 개느삼(Sophora koreensis Nakai)의 기내 증식 최적 조건 구명)

  • Jeong, Ukhan;Lee, Hwa;Park, Sanghee;Cheong, Eun Ju
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.53-63
    • /
    • 2021
  • Sophora koreensis Nakai is an indigenous plant in Koreawith a restricted natural range, part of which is in Gangwon province. The species is known to contain phytochemicals that have beneficial effects on human health, and it is economically important in bioindustry. Because of the limited number of plants in a small range of habitats, the mass-propagation method should be developed for use and conservation. In vitro tissue culture is a reliable method in terms of mass propagation from selected clones of the species. We investigated the optimal conditions of the medium in this process, especially focusing on the concentrations of plant growth regulators(PGRs) in the culture of stem-containing axillary buds. Three statistical methods, i.e., ANOVA, response surface method(RSM), and fuzzy clustering were used to analyze the plant growth, number of shoots induced, and shoot length with various combinations of PGRs. Results from the RSM differed from those of the other two methods; thus, the method was not suitable. ANOVA and fuzzy clustering showed similar results. However, more accurate results were obtained using fuzzy clustering because it provided a probability for each treatment. On the basis of the fuzzy clustering analysis, stem tissue produced the greatest number of shoots(11.03 per explant; 63.33%) on a medium supplemented with 5-��M 6-benzylaminopurine and 2.5-��M thidiazuron(TDZ). Proliferation of shoots(2.18 ± 0.21 cm, 63.33%) was attained on a medium supplemented with 2.5-��M BA, 2.5-��M TDZ, and 2.5-��M gibberellic acid.

Experimental Transplantation for the Restoration of Seagrass, Zostera marina L. Bed Around Sinyangseopji Beach in Bangdu Bay, Jeju Island (제주 신양섭지해수욕장 주변 방두만 거머리말 군락 복원을 위한 실험적 이식)

  • LEE, HYUNG WOO;KANG, JEONG CHAN;PARK, JUNG-IM;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.343-355
    • /
    • 2021
  • Eelgrass, Zostera marina L., was widely distributed around Sinyangseopji Beach in Bangdu Bay, on the eastern coast of Jeju Island, until breakwater construction in the late 1990s resulted in its complete loss. Six experimental sites were identified for restoration of the Z. marina bed in Bangdu Bay. Using the staple method, 500 Z. marina shoots were transplanted at each site in January 2019 and 2020. The transplants, along with environmental parameters, were monitored for 10 months following transplantation. There were significant differences in underwater irradiance, water temperature, and salinity among the sites, but all were suitable for Z. marina growth. The Ulva species, an opportunistic alga, appeared in spring and accumulated during summer at all sites; however, there was no significant effect of Ulva species on the survival and growth of the eelgrass transplants. Most of the transplanted Z. marina survived, and after 3 months, the density increased by 112.5-300% due to vegetative propagation, with a rapid rate of increase observed during spring and early summer at all sites. For 1-2 months after transplanting, the Z. marina shoots showed signs of transplant shock, after which the shoot density increased at all sites, confirming that all transplants adapted well to the new environment. However, in both 2019 and 2020, during late summer to early fall, the sites experienced heavy damage from typoons (twice in 2019 and three times in 2020) that hit Bangdu Bay. The transplants at two sites located in the center of Bangdu Bay were completely destroyed, but those at three sites located to the west of the bay showed a 192-312% increase in density. Thus, we confirmed that the Bangdu Bay Z. marina bed can be restored, with the highest probability of success for Z. marina restoration on the western side of Bangdu Bay, which is protected from typhoons.