Browse > Article
http://dx.doi.org/10.7740/kjcs.2018.63.4.273

Optimum Seeding Date of Wet Hill Seeding on Puddled Soil after Weedy Rice Control in Southern Plain Area of South Korea  

Hwang, Woon-Ha (National Institute of Crop Science, RDA)
Jeong, Jae-Hyeok (National Institute of Crop Science, RDA)
Lee, Hyen-Seok (National Institute of Crop Science, RDA)
Yang, Seo-Yeong (National Institute of Crop Science, RDA)
Lee, Chung-Keun (National Institute of Crop Science, RDA)
Cho, Seung-Hyun (Jeollabuk-do Agricultural Reseach&Extension Services)
Min, Hyun-Kyung (Jeollanam-do Agricultural Reseach&Extension Services)
Kim, Sang-Kuk (Gyeongsangbuk-do Agricultural Reseach&Extension Services)
Han, Eun-Hui (Gyeongsangnam-do Agricultural Reseach&Extension Service)
Choi, Kyung-Jin (National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.63, no.4, 2018 , pp. 273-281 More about this Journal
Abstract
Wet hill seeding (WHS) is one of the more famous labor and money saving methods technology used for rice cultivation. In WHS, rice standing percentage and weedy rice occurrence are the most important factors considered to secure a rice yield. We investigated the optimum seeding date of WHS in the Southern Plain area of South Korea. Weedy rice needed two weeks at $15^{\circ}C$ to show over 80% emergence. Germinated rice seed grown at $20^{\circ}C$ needed over for 10 days to achieve a shoot length over 3 cm. In field cultivation, the mean temperature for ten days after seeding showed a highly positive correlation with rice standing rate, spikelet number per square meter and yield index that favorably compared to machine transplanting. With these data, we suggest that the optimum seeding date of WHS that can secure over 98% of yield index of machine transplanting in Southern part of Korea is May. 21~Jun. 5 in Honam and May. 16~Jun. 5 in Yeongnam area.
Keywords
optimum seeding date; temperature; weedy rice; wet hill seeding;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, W.Y., J.K. Nam, S.S. Kim, J.H. Lee, J.H. Kim, H.K. Park, N.H. Back, M.G. Choi, C.K. Kim, and K.Y. Jung, 2005. Opimum transplanting date for production quality rice in Honam plain area. Korean. J. Crop Sci. 50(6) : 435-441.
2 Choi, M.K., B.I. Gu, S.G. Kang, W.G. Sang, N.H. Baek, Y.D. Kim, H.K. Park, W.Y. Choi, T.S. Park, and B.K. Kim, 2012. Study on the optimal seeding date of rice direct hill seeding on puddle paddy in Honam plain area. Korean J. Intl. Agri. 24(3) : 325-330.
3 Im, I.B., J.K Kang, and S. Kim, 2004. Physio-Ecological characteristics and control of weedy rice in the rice paddy. Kor. J. Weed Sci. 24(1) : 56-63.
4 Im I.B., B.H. Im, J.H. Park, J.H. Jang, M.H. Im, and I.Y. Lee. 2015. Weeds on rice paddy field of Jeonnam western region. Weed Turf. Sci. 4(4) : 295-307.   DOI
5 Kim, S.Y., B.C. Moon, S.T. Park, S.O. Shin, and S.J. Yang. 2002. Control of water foxtail (Aleopercurus aequalis var. amurensis Ohwi.) by paraquat and glyphosate in no-tillage dry seeded rice. Kor. J. Weed Sci. 22(4) : 344-349.
6 Kim, J.K, J.L. Lee, K.H. Park, and M.H. Lee. 1995. Characteristics of the rice plant associated with loding highly adapted in broadcast-seeded cultivation. RDA. J. Agri. Sci 37(2) : 20-28.
7 Kim, C.S., S.J. Lee, J.Y. Ko, E.S. Yoon, U.S. Yeo, J.H. Lee, D.Y. Kwak, M.S. Shin, and B.G. Oh, 2007. Evalutaion of optimum rice heading period under recent climate change in Yeonnam area. 9(1) : 17-28.
8 Kim, S.Y., Y. Son, W.K. Ha, S.T. Park, and S.C. Kim, 1998, Occurrence of weedy rice as affected by rice cultivation methods. Kor. J. Weed Sci. 18(supp.1) : 57-59.
9 Lee, C.W., J.E. Hill, and Y.J. Oh. 1993. Germination and dissolved oxygen uptake of californoa rices in water seeding. Korean J. Crop Sci. 38(2) : 117-120.
10 National Institute of Crop Science (NICS). 2012. Methods of soil and plant analysis. RDA. Suwon, Korea.
11 Hwang, W.H., J.S. Back, S.H. An, H.Y. Jeong, H.S. Lee, J.T. Yoon, T.S. Park, G.H. Lee, and K.J. Choi. 2017. Emergence characteristics of weedy rice collected in South Korea. Weed Turf. Sci. 6(3) : 179-188.   DOI
12 National Institute of Crop Science (NICS). 2014. Manual for rice direct seeding.
13 National Institute of Crop Science(NICS). 2017. Manual for rice direct seeding.
14 Shon, J.Y., C.K. Lee, J,H. Kim, Y.H. Yoon, and W.H. Yang, 2012. Comparison of growth, heading and grain filling characteristics between wet hill seeding and transplanting in rice. Korean J. Crop Sci. 57(2) : 151-159.   DOI
15 Park, S.H. 1994. Summary of rice direct seeding technology in Japan. p219.
16 Park, S.H., D.Y. Kwak, D.K. Shin, S.Y. Kim, and D.S. Lee. 1999. Rice seeding establishment and early growth affected by seeding depth and flooding duration for anaerobic wet seeding. Kor. J. Intl. Agri. 11(2) : 161-168.
17 Park, H.K., S.S. Kim, W.Y. Choi, K.S. and Lee, J.K. Lee, 2002, Effect of continuous cutltivation years on soil properties, weed occurrence and rice yield in no-tillage machine transplanting and direct dry seeding culture of rice. Kor. J. Crop Science. 47(3) : 167-173.
18 Shon, J.Y., J.C. Ko, W.J. Kim, B.K. Kim, C.K. Kim, and N.J. Jung. 2008. Changes of antioxidative enzymes and alcohol dehydrogenase in young rice seedlings submerged in water. KoreanJ. Crop Sci. 53(3) : 430-446.
19 Shon, J.Y. 2011. Physio-biochemical characterization and transcript profiling of hypoxia and anoxia-tolerant rice during germination and early seedling growth. Thesis of Ph.D. Chonbuk National University.
20 Shon, J.Y., C.K. Lee, J,H. Kim, Y.H. Yoon, W.H. Yang, K.J. Choi, H.K. Park, T.S. Park, C.K. Kim, and Y.H. Yoon, 2013. Changes of weedy rice occurrence in repeated wet direct seeding and alternate transplanting/wet direct seeding of rice. Weed Turf. Sci. 2(4) : 348-351.   DOI
21 Yang, W.H., J.K. Kim, M.H. Lee, S.C. Chen, and H.S. Han. 2015. Status and prospect on rice direct seeding technology of farmers. Koran J. Int. Agri. 27(3) : 342-347.   DOI
22 Park, S.H., C.W. Lee, W.H. Yang, and R.K. Park. 1986. Direct seeding cultivation on submerged paddy in rice. Korean J. Crop Sci. 31(2) : 204-213.