• Title/Summary/Keyword: shock wave boundary layer interaction

Search Result 66, Processing Time 0.026 seconds

An experimental study on the characteristics of transverse jet into a supersonic flow field (초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구)

  • 박종호;김경련;신필권;박순종;길경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.

Study on the Affects of Mounting Axisymmetric Inlet to Airframe

  • Ando, Yohei;Matsuo, Akiko;Kojima, Takayuki;Maru, Yusuke;Sato, Tetsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.699-702
    • /
    • 2004
  • In this study, the affect of mounting axisymmetrical supersonic inlet to airfoil, which has 65 degree swept angle was numerically investigated. The parameter for this calculation are tree stream Mach number M=2.0 and 2.5, the distance between inlet spike and airfoil lower surface $L_{sw}$/$R_{cowl}$ = 1.21-1.54 and angle of attack to the airfoil 0-4. The mass capture ratio improved 3points in M=2.0 condition and 1points in M=2.5 while the mass capture ratio without airfoil surface was 57% and 71 % for each case. These are the result from increase of density and change of velocity deflection by the shock wave structure formed between inlet and airfoil surface. On the other hand, the distortion of Mach number at cowl lip plane increased by 13% in M=2.0, 3% in M=2.5 condition. The effects of the angle attack on the mass capture ratio is greater than that of the shock wave interaction between inlet and cowl, but the effects to the distortion is smaller in the range of this calculation condition. In the condition of M=2.0 with 4 degrees of angle of attack, inlet distortion of Mach number is mainly caused by the affects of the shock wave interaction between inlet and airfoil surface, while the largest angle of the velocity vector in the radial direction at cowl lip plane is caused by the affect of angle of attack. This large velocity vector made the flow inside the cowl subsonic and caused spillage, which interfere with the boundary layer of airfoil surface.

  • PDF

Study of the Compressible Nozzle Flow in a Gas Circuit Breaker (가스차단기의 소호노즐 내부에서 발생하는 압축성 유동에 관한 연구)

  • Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.123-126
    • /
    • 2002
  • Very frequently the compressible flow in an extinction nozzle of gas circuit breaker is simulated under no arc assumption, which can be reasonable for both high and low current breakings. In the present study, computations are performed to investigate the major features of the compressible flows inside the arc extinction nozzle of gas circuit breaker. A fully implicit finite volume scheme is applied to solve the two-dimensional, steady, compressible, Wavier-Stokes equations. The computed results are validated with the previous experimental data available. Several types of turbulence models are explored to reasonably predict the complicated flows inside the arc extinction nozzle. The obtained results show that the shock wave boundary layer interaction inside the nozzle significantly influences the whole performance of the gas breaker.

  • PDF

Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect (삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석)

  • Han Y. J.;Kim K. Y.;Ko S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

Shock wave instability in a bent channel with subsonic/supersonic exit

  • Kuzmin, Alexander
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • Two- and three-dimensional turbulent airflows in a 9-degrees-bent channel are studied numerically. The inner surfaces of upper and lower walls are parallel to each other upstream and downstream of the bend section. The free stream is supersonic, whereas the flow at the channel exit is either supersonic or subsonic depending on the given backpressure. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver ANSYS CFX. The solutions reveal instability of formed shock waves and a flow hysteresis in considerable bands of the free-stream Mach number at zero and negative angles of attack. The instability is caused by an interaction of shocks with the expansion flow formed over the convex bend of lower wall.

Numerical analysis of the impulsive noise generation and propagation using high order scheme (고차의 수치적 기법을 적용한 충격소음의 생성 및 전파 해석)

  • Kim, Min-Woo;Kim, Sung-Tae;Kim, Kyu-Hong;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1494-1498
    • /
    • 2007
  • Impulsive shooting noise is basically complex phenomenon which contains the linear and non-linear characteristics. For those reasons, numerical analysis of impulsive shooting noise has the difficulties in control of the numerical stability and accuracy on the simulation. In this research, Wave-number Extended Finite Volume Scheme (WEFVS) is applied to the numerical analysis of impulsive shooting noise. In the muzzle blast flow simulation, the generation of the precursor wave and the induced vortex ring are observed. Consequently, blast wave. vortex ring interaction and vortex ring. bow shock wave interaction are evaluated on the shooting process using the accurate and stable scheme. The sound generation in the interactions can be explained by the vorticity transport theorem. The shear layer is evolved behind the projectiles due to the jet flow. In these computations, the impulsive shooting noise is generated by the complex interaction with shooting process and is propagated to the far-field boundary. The impulsive shooting noise generation can be observed by the applications of WEFVS and analyzed by the physical phenomena.

  • PDF

Study on Multiple Shock Wave Structures in Supersonic Internal Flow (초음속 내부유동에서 다수의 충격파 구조에 대한 연구)

  • James, Jintu K;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.31-40
    • /
    • 2020
  • The structure and dynamics of multiple shock waves are studied numerically using a finite volume solver for a model with nozzle exit Mach number of 1.75. At first, the shock variation based on images were analyzed using a Matlab program then later to the wall static pressure variation. The amplitude and frequency variation for multiple shock waves are analyzed. The cross-correlation between the shock location suggests that the first and the second shocks are well correlated while the other shocks show a phase lag in the oscillation characteristics. The rms values of pressure fluctuations are maximum at the shock locations while the other parts in the flow exhibit a lower value os standard deviation.

Accurate Computations for Multi-dimensional flows : Spatial Discretization (다차원 유동의 정확한 수치해석 : 공간 차분법)

  • Kim Kyu Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.5-10
    • /
    • 2003
  • In order to reduce the excessive numerical dissipation, the new spatial discretization scheme is introduced. The present method in this paper has the formula that has an additional procedure of defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system. In addition, the present method guarantees the monotonic characteristic in capturing a discontinuity. Through a stationary or moving contact discontinuity and a stationary or moving shock discontinuity, a vortex discontinuity and shock wave/ boundary layer interaction, it is verified that the accuracy of the present method is improved.

  • PDF

Prediction on The Base Pressure for An Axisymmetric Body (선대칭 형태에 있어서의 베이스 압력의 예측)

  • Baik, Doo-Sung;Han, Young-Chool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.491-496
    • /
    • 2000
  • The physics of the flow field surrounding an engine nacelle afterbody is very complex. A high pressure jet from the nozzle interacts with the external flow and causes upstream influence on the afterbody surface field. At certain conditions, the nozzle boundary layer can separate, either by shock wave interaction or by adverse pressure gradient effect, resulting in a severe drag penalty. Furthermore, a finite afterbody base implies a recirculating flow region. A flow modeling method has been developed to analyze the flow in the annular base(rear-facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhause jet. Real values of exhaust gas properties and temperature are included.

  • PDF

A Numerical Study on the Off-Design Performance of Three-Dimensional Transonic Centrifugal Compressor Diffusers (3차원 천음속 원심압축기 디퓨저의 탈설계 성능에 관한 수치적 연구)

  • Kim, Sang Dug;Song, Dong Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.134-140
    • /
    • 1999
  • A three-dimensional CSCM upwind flux difference splitting Navier-stokes code with two-equation turbulence models was developed to predict the transonic flows in centrifugal compressor diffuser. The k-$\epsilon$ model of Abe et al. performed well in predicting the pressure distribution in the shock wave/turbulent boundary-layer interaction. Three turbulence models predicted the similar distribution of static pressure through the diffuser and showed a good agreement with the experimental results. The secondary flows in the corner were predicted well by these turbulence models. The pressure increase before the throat of the diffuser vane is important for the overall pressure recovery. As the mass flow rate increased the blockage decreased at the throat. The pressure coefficient distribution through the diffuser depended on the throat blockage not on the rotational speed of the impeller.

  • PDF