• Title/Summary/Keyword: shipping forecast

Search Result 40, Processing Time 0.022 seconds

A study on the relationship of hub ports' transshipment and trade in East Asia: Focusing on Korean ports

  • Shou Jian Min;Lee Su-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.21-36
    • /
    • 2006
  • This paper is a study of the relationships between trade and transshipment in Korea. Through the analysis of the data collected, a comprehensive model has been developed to analyze and predict relationships between trade and transshipment. By using analyses of port and trade evolution in Asia, the model identifies some important results. An application of the model to forecast developments in selected regions in China is also included in this paper. The paper provides a basis for shipping companies to decide on appropriate transshipment port strategies, and provides important theoretical references for Korean ports' development Supported by Shanghai leading Academic Discipline Project, project Number: T0602.

  • PDF

A Study on the Status and Implications of Domestic Land Transport Business (국내 육상운송업의 현황과 시사점에 관한 연구)

  • Byun, Dae-Ho
    • Asia-Pacific Journal of Business
    • /
    • v.10 no.2
    • /
    • pp.117-130
    • /
    • 2019
  • The land transport industry is more important than the air transport or shipping industry. Land transport has the largest number of business and employees, and the fourth industrial revolution technology has recently infiltrated the most rapidly. In this paper, we examine the status, future prospects, and implications of the land transport industry in Korea for the past 7 years based on the statistical database and related literature. We survey the scope and characteristics of the freight truck or rail transport industry, government policies, and recent logistics industry trends. From the results of these current and forecast statistical surveys, we propose a way forward for the domestic transport business.

Analysis of the Synchronization between Global Dry Bulk Market and Chinese Container Market (글로벌 건화물 운임시장과 중국 컨테이너 운임시장 간의 동조성 분석)

  • Kim, Hyun-Sok;Chang, Myung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.41 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • The purpose of this investigation is to analyze the synchronization between the representative global freight index, the Baltic Dry bulk Index (BDI) and the China Container Freight Index (CCFI) with monthly data from 2000 to 2016. Using the non-stationarity of the business cycle that is able to include common trends, we employ the Engle-Granger 2 stage co-integration test and found no synchronization. On the contrary, we additionally estimated the causality between the markets and revealed the causality, which implies that the Chinese economy has a significant effect on the global market. The results of this empirical analysis demonstrate that the CCFI of China is appropriate for analyzing the shipping industry. In practice, this means that it is more appropriate to include CCFI in the global market outlook than use it as a substitute for the global freight rate index, the BDI. This is a case study of the synchronization of the economic fluctuations of the shipping industry. It suggests that the economic fluctuations of China need to be considered in the unstable global market forecast. In particular, this case applies to the fluctuations in the shipping industry synchronism and provides important results in scientific terms.

Forecasting the Volume of Imported Passenger Cars at PyeongTaek·Dangjin Port Using System Dynamics (시스템다이내믹스를 활용한 평택·당진항 수입 승용차 물동량 예측에 관한 연구)

  • Lee, Jae-Gu;Lee, Ki-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.517-523
    • /
    • 2020
  • Pyeongtaek·Dangjin port handles the largest volume of finished vehicles in Korea, including more than 95% of imported cars. However, since the volume of imported cars has been stagnant since 2015, officials planning to invest in port development or automobile-related industries must make new forecasts. Economic variables such as the GDP often have been used in predicting automobile volume, but prior research showed that the impact of these economic variables on automobile volume I has been gradually decreasing in developed countries. These variables remain important predictors, however, in developing countries that experience rapid economic growth. In this study, predicting the volume of imported passenger cars at Pyeongtaek·Dangjin port, the decreasing Korean population was a major factor we considered. Our forecast showed that the volume of imported passenger cars at Pyeongtaek·Dangjin port will gradually decrease -by 2021. The Mean Absolute Percentage Error (MAPE) verification was performed to measure the accuracy of the predicted results, and the scenario analysis was performed on the share of imported passenger cars.

Analysis of Causality of the Increase in the Port Congestion due to the COVID-19 Pandemic and BDI(Baltic Dry Index) (COVID-19 팬데믹으로 인한 체선율 증가와 부정기선 운임지수의 인과성 분석)

  • Lee, Choong-Ho;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.161-173
    • /
    • 2021
  • The shipping industry plummeted and was depressed due to the global economic crisis caused by the bankruptcy of Lehman Brothers in the US in 2008. In 2020, the shipping market also suffered from a collapse in the unstable global economic situation due to the COVID-19 pandemic, but unexpectedly, it changed to an upward trend from the end of 2020, and in 2021, it exceeded the market of the boom period of 2008. According to the Clarksons report published in May 2021, the decrease in cargo volume due to the COVID-19 pandemic in 2020 has returned to the pre-corona level by the end of 2020, and the tramper bulk carrier capacity of 103~104% of the Panamax has been in the ports due to congestion. Earnings across the bulker segments have risen to ten-year highs in recent months. In this study, as factors affecting BDI, the capacity and congestion ratio of Cape and Panamax ships on the supply side, iron ore and coal seaborne tonnge on the demand side and Granger causality test, IRF(Impulse Response Function) and FEVD(Forecast Error Variance Decomposition) were performed using VAR model to analyze the impact on BDI by congestion caused by strengthen quarantine at the port due to the COVID-19 pandemic and the loading and discharging operation delay due to the infection of the stevedore, etc and to predict the shipping market after the pandemic. As a result of the Granger causality test of variables and BDI using time series data from January 2016 to July 2021, causality was found in the Fleet and Congestion variables, and as a result of the Impulse Response Function, Congestion variable was found to have significant at both upper and lower limit of the confidence interval. As a result of the Forecast Error Variance Decomposition, Congestion variable showed an explanatory power upto 25% for the change in BDI. If the congestion in ports decreases after With Corona, it is expected that there is down-risk in the shipping market. The COVID-19 pandemic occurred not from economic factors but from an ecological factor by the pandemic is different from the past economic crisis. It is necessary to analyze from a different point of view than the past economic crisis. This study has meaningful to analyze the causality and explanatory power of Congestion factor by pandemic.

Demand Forecast For Empty Containers Using MLP (MLP를 이용한 공컨테이너 수요예측)

  • DongYun Kim;SunHo Bang;Jiyoung Jang;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.85-98
    • /
    • 2021
  • The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.

A Study on Forecasting Demand and Supply of Marine Officer for Korean Ocean-Going Merchant Vessels (외항 상선 해기사 인력 수요 및 공급 예측에 관한 연구)

  • Sang-hoon Shin;Yong-John Shin
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.7-16
    • /
    • 2024
  • Although the number of ocean-going merchant ships is increasing, the number of Korean marine officers is decreasing. This manpower shortage problem is becoming more serious. This study objectively measured factors determining the demand and supply of ocean-going merchant ship officers and forecasted the exact manpower demand and supply. Demand was predicted by applying the number of ship officers required for each ship size to the number of ships forecasted. The supply was predicted by segmenting by position and age using the Markov model, reflecting increase/decrease factors such as promotion, turnover, retirement, and new entry by year. The demand for ocean-going merchant ship officers will increase from 11,638 in 2023 to 13,879 in 2030 while the supply will decrease from7,006 in 2023 to 6,426 in 2030, with the shortage expected to exceed 10,000 in 2040. This study can be used as a reference to solve the problem of manpower shortage for ocean-going merchant ship officers by improving the accuracy of predictions through objective data, scientific analysis methods, and logical reasoning.

Developing Parameters of Forecasting Models in the Field of Distribution Science to Forecast Vietnamese Seafarer Resources

  • DANG, Dinh-Chien;NGUYEN, Thai-Duong;NGUYEN, Nhu-Ty
    • Journal of Distribution Science
    • /
    • v.19 no.8
    • /
    • pp.47-56
    • /
    • 2021
  • Purpose: Maritime sector is fundamental to international trade; there is no doubt that seafarers have played an essential role in maritime shipping and distribution science industry. Thus, this study uses Grey models to predict the number of seafarers in Vietnam expecting to provide a range of future seafarers. Research design, data and methodology: Statistics data are adopted for numbers of seafarers by Vietnam Maritime Administration categorizing into three types: Officers at Management level, Officers at Operational level and Navigation - Engine officer cadet. Results: The results have showed that a lack of qualified seafarers in the distribution industry, which has become a global issue and Vietnam is facing challenges of providing enough supply of seafarers in the next few years. Since there has been a concern of the unbalance between demand and supply of seafarers, researches in maritime sector needs a high accuracy in forecasting the number of available qualified seafarers in Vietnam. Conclusion: This method can be applied to predict numbers of other human resources in transportation, distribution and/or logistics industries when the information is poor and insufficient. The next few years are predicted to witness a downtrend in sailors - oilers which leads to the fact that the total number of available seafarers is decreased.

A Comparative Analysis of the Forecasting Performance of Coal and Iron Ore in Gwangyang Port Using Stepwise Regression and Artificial Neural Network Model (단계적 회귀분석과 인공신경망 모형을 이용한 광양항 석탄·철광석 물동량 예측력 비교 분석)

  • Cho, Sang-Ho;Nam, Hyung-Sik;Ryu, Ki-Jin;Ryoo, Dong-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • It is very important to forecast freight volume accurately to establish major port policies and future operation plans. Thus, related studies are being conducted because of this importance. In this paper, stepwise regression analysis and artificial neural network model were analyzed to compare the predictive power of each model on Gwangyang Port, the largest domestic port for coal and iron ore transportation. Data of a total of 121 months J anuary 2009-J anuary 2019 were used. Factors affecting coal and iron ore trade volume were selected and classified into supply-related factors and market/economy-related factors. In the stepwise regression analysis, the tonnage of ships entering the port, coal price, and dollar exchange rate were selected as the final variables in case of the Gwangyang Port coal volume forecasting model. In the iron ore volume forecasting model, the tonnage of ships entering the port and the price of iron ore were selected as the final variables. In the analysis using the artificial neural network model, trial-and-error method that various Hyper-parameters affecting the performance of the model were selected to identify the most optimal model used. The analysis results showed that the artificial neural network model had better predictive performance than the stepwise regression analysis. The model which showed the most excellent performance was the Gwangyang Port Coal Volume Forecasting Artificial Neural Network Model. In comparing forecasted values by various predictive models and actually measured values, the artificial neural network model showed closer values to the actual highest point and the lowest point than the stepwise regression analysis.

The Inter-correlation Analysis between Oil Prices and Dry Bulk Freight Rates (유가와 벌크선 운임의 상관관계 분석에 관한 연구)

  • Ahn, Byoung-Churl;Lee, Kee-Hwan;Kim, Myoung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.289-296
    • /
    • 2022
  • The purpose of this study was to investigate the inter-correlation between crude oil prices and Dry Bulk Freight rates. Eco-friendly shipping fuels has being actively developed to reduce carbon emission. However, carbon neutrality will take longer than anticipated in terms of the present development process. Because of OVID-19 and the Russian invasion of Ukraine, crude oil price fluctuation has been exacerbated. So we must examine the impact on Dry Bulk Freight rates the oil prices have had, because oil prices play a major role in shipping fuels. By using the VAR (Vector Autoregressive) model with monthly data of crude oil prices (Brent, Dubai and WTI) and Dry Bulk Freight rates (BDI, BCI and (BP I) 2008.10~2022.02, the empirical analysis documents that the oil prices have an impact on Dry bulk Freight rates. From the analysis of the forecast error variance decomposition, WTI has the largest explanatory relationship with the BDI and Dubai ranks seoond, Brent ranks third. In conclusion, WTI and Dubai have the largest impact on the BDI, while there are some differences according to the ship-type.