• Title/Summary/Keyword: ship stability

Search Result 378, Processing Time 0.022 seconds

A Study on the Performance Predictions of Twin Sail Drone (트윈 세일 드론의 성능추정에 관한 연구)

  • Ryu, In-Ho;Yang, Changjo;Han, Won-heui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.827-834
    • /
    • 2022
  • Recently, marine surveys using unmanned ships are attracting attention, and research on small unmanned ships using sails is on the rise. Sail drones can be used for marine surveys, monitoring, and pollution management. Therefore, in this study, using the method of estimating the ship speed for twin sail drones, the optimal conditions for sailing are checked, and the performance to be considered in the initial design stage, such as the motion performance and resistance of the sail drone. Consequently, the twin sail drone had a speed lower than 2.0 m/s, and the stability satisfied the rule by DNV. In addition, the maximum speed at an angle of attack of 20° at TWA 100° was 1.69 m/s and that at an angle of attack of 25° at TWA 100° was 1.74 m/s.

Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle (소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구)

  • Park, Hyun-Bum;Kang, Kuk-Jin;Kong, Chang-Duk
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, conceptual structural design of the main wing for a small scale WIG(Wing in Ground Effect) among high speed ship projects, which will be a high speed maritime transportation system for the next generation in Rep. of Korea, was performed. The Carbon/Epoxy material was selected for the major structure, and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for the present study, firstly the design load was estimated through the critical flight load case study, and then flanges of the front and rear spars from major bending loads and the skin and the spar webs from shear loads were preliminarily sized using the netting rule and the rule of mixture. Stress analysis was performed by a commercial FEA code, NASTRAN. From the stress analysis results for the first designed wing structure, it was confirmed that the upper skin between the front spar and the rear spar was unstable fer the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich type structure at the skin and the web were added. After design modification, the structural safety and stability for the final design feature was confirmed. In addition to this, the insert bolt type structure with eight high strength bolts to fix the wing structure to the fuselage was adopted for easy assembly and removal as well as in consideration of more than 20 years fatigue life.

Multi-Criteria Topology Design of Truss Structures

  • Yang, Young-Soon;Ruy, Won-Sun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2001
  • This paper presents a novel design approach that could generate structural design alternatives having different topologies and then, select the optimum structure from them with simulataneously determining its optimum design variables related to geometry and the member size subjected to the multiple objective design environments. For this purpose, a specialized genetic algorithm, called StrGA_DeAl + MOGA, which can handle the design alternatives and multi-criteria problems very effectively, is developed for the optimal structural design. To validate the developed method, method, plain truss design problems are considered as illustrative example. To begin with, some possible topological of the truss structure are suggested based on the stability criterion that should be satisfied under the given loading condition. Then, with the consideration of the given multi-criteria, several different topology forms are selected as design alternatives for the second step of the conceptual design process. Based on the chosen topolgy of truss structures, the sizing or shaping optimization process starts to determine the optimum design parameters. Ten-bar truss problems are given in the paper to confirm the above concept and methodology.

  • PDF

A Study on Future Container Cranes (차세대 컨테이너크레인에 대한 고찰)

  • Jung Hyun-Soo;Lee Suk-Jae;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.291-298
    • /
    • 2005
  • In this article. the specifications of a future container crane for a 18,000 TEU megaship are investigated After studying the transitions of containerships through the past half century, the characteristics of the past and current container cranes are outlined. together with various research trends throughout the world Upon these results, the size and performance of the container crane that will be used beyond the year 2014 are forecast. Specifically, the structure, trolley and hoist mechanism, control method, outreach. backreach, rail gage, loading capacity, stability, durability, and others are summarized.

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.

Influence Factors Affecting the Longitudinal Force of Continuous Welded Rail on Railroad Bridges (장대레일 철도 교량의 축력 영향인자 분석)

  • Kim Kyung Sam;Han Sang Yun;Lim Nam Hyoung;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.385-390
    • /
    • 2003
  • Recently, use of Continuous Welded rail(CWR) is increased for structural, economical reason but new problem is caused accordingly and phenomenon that give threat in traveling by ship stability of train is led. According as rail is prolonged, excessive relative displacement and longitudinal force can happen to rail by temperature change and external force. Specially, buckling or fracture of rail can happen in railroad bridges because relative displacement by bridge and properties of matter difference between rail grows and additional axial force happens to rail by behavior of bridge. According to several study, longitudinal force of rail in bridge is influenced with ballast resistance, elongation length, boundary condition, stiffness of framework. Non-linear behavior of ballast acts by the most important factor in interaction between rail and bridge. Therefore, must consider stiffness of bridge construction with non-linear characteristic of ballast and stiffness of base for accuracy with longitudinal force calculation and analyze. In this study, perform material non-linear analysis for longitudinal force of CWR and three dimensional buckling analysis to decide buckling force.

  • PDF

NO ROOT GAP HORIZONTAL BUTT-WELDING WITH MAG PROCESS

  • Woo, Wan-Chuck;Jang, Tae-Won;Lee, Jae-Won
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.425-429
    • /
    • 2002
  • It has been used many kinds of horizontal butt-welding methods at block-to-block erection stage in shipbuilding companies. For examples, some companies use conventional FCA W process with one side or both sides groove joint welding, others use carriage with torch holder type mechanized welding method. Although lots of efforts were done until now, some problems in quality and productivity still remain in ship's hull welding. In this study, we have attempted to raise productivity and quality on horizontal position of welding with following 3 items. 1) Prepare groove condition with no root gap for making easy fit-up work. 2) Develop improved MAG (100% $CO_2$ gas shielding) welding process with solid wire for making sound root bead from one side. 3) Develop and apply quite new automatic welding carriage. The stability of new welding process was confirmed by conducting mechanical tests of weldments to verify the soundness of weldments.

  • PDF

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 1st Report : on the Mechanical Properties and Microstructure (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제1보 : 기계적 특성 및 조직)

  • Ahn, Seok-Hwan;Jeong, Jeong-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.64-71
    • /
    • 2005
  • The welding methods have been applied to the most structural products used in the automobile, ship construction, and construction. The structure steel must have sufficient strength of structure; However, the mechanical properties of the welded part changes when it is welded. Therefore, the stability or life of the structure may be affected by the changed mechanical properties. The mechanical properties of the welded part must be examined in order to ensure the safety of structure. In this research, the SS400 steel and the STS304 steel were used to estimate the mechanical properties of the HAZ by weld thermal cycle simulation. In this study, the materials were used to examine the weld thermal cycle simulation characteristic, under two conditions: the drawing with diameter of $\Phi$10 and the residual stress removal treatment. To examine the mechanical properties by the weld thermal cycle simulation, the tensile test was carried out in room temperature. The crosshead speed was lmm/min.

The Study about Characteristics of Welding Consumable and Weld Metal for EGW (EGW 용접재료 및 용접부 특성에 관한 연구)

  • Lee, Jeong-Soo;Yun, Jin-Oh;Jeong, Sang-Hoon;Park, Chul-Gyu;An, Young-Ho
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.79-83
    • /
    • 2010
  • In this study, newly developed welding consumables for EGW were welded in EH 36 TM steel plates and their welded joints were evaluated in point of mechanical properties and microstructures compared with imported consumables. Newly developed welding consumables were evaluated as good arc stability and slag fluidity, substantially the same with imported products. The tensile strength of all welded joints were sufficient to meet the requirements specified in a ship’s classification(490~640MPa) and all areas of fracture were heat affected zone(HAZ). Charpy absorbed energy values of all EG welded metals were sufficient to meet the requirements of classification(min. 34J) and those of newly developed wires were evaluated to be better than those of imported wires. As a result observing microstructures of single and tandem EG welded metals through optical and scanning electron microscope (OM&SEM), no grain boundary ferrite(PF(G)) were created in a prior austenite grain boundary and a volume fraction of a fine acicular ferrite were observed very high.

Study on Catamaran Type Solar Boat Using the Pod Propulsion System (포드형 추진시스템을 이용한 카타마란형 솔라보트에 관한 연구)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • In this study, design of hull and test of model boat were carried out with electric propulsion small boat driven by photo-voltaic energy. The shape of boat was made with catamaran type by considering the ship's stability, the light-receiving area from solar. According to calculation, when speed of model boat is 5 knots, it was estimated the available power for propulsion with 1.1[hp]. However, the natural energy such as solar energy is strictly dependent upon the climate conditions so the real boat speed is slightly lower than the estimated value.