• 제목/요약/키워드: ship propulsion shafting

검색결과 33건 처리시간 0.023초

전달매트릭스법에 의한 다지점지지계의 연성강제감쇠 횡진동 계산에 관한 연구 (A Study on the Coupled Forced Lateral Vibration of Multi-Supported Shafting by the Transfer Matrix Method)

  • 이돈출;박병학;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제14권2호
    • /
    • pp.35-47
    • /
    • 1990
  • The natural frequency of lateral vibration for ship's propulsion shafting tends to become lower as the relative stiffness of supproted system of the propulsion shafting decreases and the weight of shafting increases. Especially, the propulsion shafting of high-power ships such as car ferries, roll-on/roll-off, and container ships are susceptible to lateral vibration for their resonant speeds are happened to be in ordinary operating speed ranges. So far, many papers on the lateral vibration of ship's propulsion shaftings are published but they treated mainly special cases and not explained explicitly the calculation process. In this paper, the calculation processes of undamped and also forced damped lateral vibration by the transfer matrix method are presented and the calculation programs are developed. With the developed computer programs, a ship's propulsion shafting which was introduced on the published paper is analyzed for its lateral vibration and also the lateral vibration of the main drive shaft for a lathe is calculated to show the availiability of developed computer programs.

  • PDF

다자유도계를 갖는 듀핑 진동계의 강제진동해석 (Forced Vibration Analysis for Duffing's Vibration Systems with the Multi-Degree-of-Freedom Systems)

  • 전진영;박용남;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.18-24
    • /
    • 2000
  • As ship's propulsion shafting system has been complicated, many linear methods that have been used until now are not sufficient enough to produce proper solutions and these solutions are ofter unreasonable. So we need to solve nonlinear systems, and many methods for solving nonlinear vibration system have been developed. In this study, the propulsion shafting system was modeled with Duffing's nonlinear vibration system and multi-degree-of-freedom, and analyzed by using Quasi-Newton method. And for the purpose of confirming the reliability of the calculating results for nonlinear forced torsional vibration of the propulsion shafting system, the nonlinear calculated results were compared with the linear calculated ones for ship's propulsion shafting system. In the result, for analysis of the forced torsional vibration of the propulsion systems with nonlinear elements, the modified Newton's method is confirmed reasonable.

  • PDF

선박 추진축계 종.비틂 연성 비감쇠 고유진동 감도해석 (The Sensitivity Analysis of Coupled Axial and Torsional Undamped Free Vibration of Ship Propulsion Shafting)

  • 김연호;조대승
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.48-55
    • /
    • 2001
  • 본 논문에서는 선박 추진축계의 중간 축과 프로펠러 축 직경 변경시에 추진축계 고유진동특성을 효율적으로 산정하고, 선박 주기관 연속운항 금지구간 설정에 영향을 미치는 비틂공진점의 최적 설계를 도모할 수 있는 추진축계 종 비틂 연성 고유진동 감도해석방법을 제시하였다. 제시된 방법의 타당성과 효율성은 2척의 실선 추진축계을 대상으로 중간 축 프로펠러 축 직경에 대한 고유진동수 감도해석을 수행하여 검토하였다. 아울러, 선급 규정을 충족시키는 범위 안에서 중간축 및 프로펠러 축의 인장강도와 축경을 변화할 경우의 종 비틂 연성 고유진동수 변화량을 고찰하였다.

  • PDF

디이젤기관 추진축계 설계를 위한 전산프로그램 개발에 관한 연구 (Developing a Computer Program for the Design of Marine Diesel Engine Shafting)

  • 김영만;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.37-48
    • /
    • 1984
  • For the designing propulsion shafting of ship, shaft diameters are usually calculated according to the Society's rules and other scantlings such as a shaft length, coupling and taper parts, etc., are decided according to calculated diameters. And then, the torsional vibration, the lateral vibration and shaft alignment should be reviewed to check whether the resonance points of torsional or lateral vibration appear within the normal operating speed range and the shaft alignment is reasonable. If the results of calculations are unsatisfactory, this process should be repeated until the final condition is determined and the process of this work takes much time to carry out. To simplify the above tedious processes, authors have developed a computer program to fulfill the above design processes at once. This program takes aim at reducing the manual calculating work associated with the propulsion shafting of ship. To confirm the availability of developed computer program, several propulsion shaftings which are driven by diesel engines, have been analysed. The results calculated by authors developed computer program show comparatively good agreements with those of the actual propulsion shafting.

  • PDF

디젤엔진 구동 발전기를 갖는 추진축계의 불안정한 비틀림진동 (Unstable Torsional Vibration on the Propulsion Shafting System with Diesel Engine Driven Generator)

  • 이돈출
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.936-942
    • /
    • 1999
  • Unstable torsional vibration on the marine ship's propulsion shafting system with diesel engine occurred due to a slippage of multi-friction clutch which was installed between increasing gear and shaft generator. In this paper, the mechanism of this vibration was verified via torsional, whirling, axial and structural vibration measurements of shafting system and noise measurement of gear box. And it was also identified by the theoretical analysis method.

  • PDF

실베스터-전달강성계수법에 의한 실습선 새동백호 추진축계의 비틀림 자유진동 해석 (Torsional Free Vibration Analysis of Propulsion Shafting of Training Ship SAEDONGBAEK by Sylvester-Transfer Stiffness Coefficient Mehtod)

  • 김명준;왕우경;여동준;최명수
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.11-19
    • /
    • 2018
  • In this study, the authors examine the propulsion shafting of the training ship SAEDONGBAEK and perform modeling to analyze the torsional free vibration of the shafting. In this paper, the computational algorithm for analyzing the torsional free vibration of the shafting with a reduction gear is formulated by the sylvester-transfer stiffness coefficient method (S-TSCM) that is a recently developed and a powerful method in free vibration analysis. According to the state of the controllable pitch propeller of the shafting and the temperature of the elastic coupling, the torsional free vibration of the shafting is performed by the S-TSCM. The authors examine the changes of the natural frequencies and natural modes which are the results of the torsional free vibration analysis of the shafting.

이진코딩 유전알고리즘과 모드해석법을 이용한 선박 추진축계의 직경 최적설계 (Optimum Design of Diameters of Marine Propulsion Shafting by Binary-Coded Genetic Algorithm and Modal Analysis Method)

  • 최명수;문덕홍;설종구
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.29-34
    • /
    • 2003
  • Genetic algorithm is a optimization technique based on the mechanics of natural selection and natural genetics. Global optimum solution can be obtained efficiently by operations of reproduction, crossover and mutation in genetic algorithm. The authors developed a computer program which can optimize marine propulsion shafting by using binary-coded genetic algorithm and modal analysis method. In order to confirm the effectiveness of the developed computer program, we apply the program to a optimum design problem which is to obtain optimum diameters of intermediate shaft and propeller shaft in marine propulsion shafting. Objective function is to minimize total mass of shafts and constraints are that torsional vibration stresses of shafts in marine propulsion shafting can not exceed the permissible torsional vibration stresses of the ship classification society. The computational results by the program were compared with those of conventional design technique.

  • PDF

기계적 임피던스법에 의한 박용 디젤기관 추진축계의 강제감쇠 비틀림 진동의 계산에 관한 연구 (A study on the calculation of forced torsional vibration with damping for the marine diesel engine shafting by the mechanical impedance method)

  • 김정열;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.307-316
    • /
    • 1985
  • Nowadays, the natural frequencies and their relative amplitudes of torsional vibration for the marine diesel engine shafting are usually calculated by the Holzer method and also its resonant amplitudes are estimated by the energy method, that is, by equating the exciting energy to the damping one. Therefore, the forced vibration amplitudes out of the resonant points can not be calculated by the above-mentioned method. And so, the reasonable barred-ranges of torsional vibration can not be set and also the flank of resonant point which locates near the calculation limit can not be estimated. For such problems, the equation of forced vibration with damping must be solved directly and these results can be utilized to derive the synthesized torsional vibration of the marine diesel engine propulsion shafting. In this study, the equation of forced vibration with damping for the marine diesel engine propulsion shafting is derived and its steady-state vibration is calculated by the mechanical impedance method. For numerical calculation of the actual propulsion shafting a computer program is developed. In order to prove the reliability of this program, an actual ship's propulsion shafting whose torsional vibration was measured is analyzed and the calculated propulsion shafting whose torsional vibration was measured is analyzed and the calculated results are compared with the measured ones. And also, they are compared with the calculated results which were obtained by the modal analysis.

  • PDF

가변추진기 추진축계시스템의 설계 (제 I 보 : 외형설계 ) (Design of Propulsion Shafting System for Controllable Pitch Propeller (I : Latout Design with Sizing))

  • 김기인;전효중;박명규;김정렬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.129-134
    • /
    • 2002
  • This study is focused on the layout design with sizing for the main propulsion shafting with controllable pitch propeller system. For appropriate design and successful manufacturing of controllable pitch Propeller system, it is based on specifications to be required from the customer as well as the stresses calculation and analysis of main propulsion system for hollow shafting. And it must be performed according to the U.S military specifications MIL-STD-2189(SH) with drawing of NAVSHIPS 803-2145807, and also the stress analysis by applying safety factor. The results are as follows : 1. For the main propulsion system with controllable pitch propeller, it is designed the following items propeller diameter, hub diameter, dimensions of oil distribution or actuating unit based on shaft mounting type, diameters of propeller and intermediate shaft, dimension of split muff coupling, coupling flange thickness and of coupling bolt diameter. 2. As the results, we can get complete our own design ability for the main propulsion shafting with controllable pitch propeller system with critical data which are necessary to establish shafting arrangement from the ship building companies.

  • PDF

선박용 디젤기관 크랭크 축계의 2절 비틀림 진동에 대한 연구 (A Study on the 2-node Torsional Vibration for Marine Diesel Engine Crankshaft)

  • 최문길;박건우
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.54-61
    • /
    • 2008
  • With the development of computer program in calculation for torsional vibration of ship's propulsion shafting it has become possible to calculate all order's vibratory amplitude, vibratory torque, vibratory stress and synthesis value at all concerned revolutions by way of solving the vibratory equation directly. Though this kind of propulsion shafting vibration calculation method makes it possible to get generalized and precise result of calculation, the unexpected critical crankshaft torsional vibration has still appeared in maneuvering range of the engine. A close investigation has been carried out to find out the cause for the 2-node propulsion shafting torsional vibration of the crankshaft that exceeded the limitation value near the MCR 104rpm on the sea trial of the recently delivered 6000TEU class container vessel from HHIC. In conclusion, as the latest super-output engine with heavy crankshaft and propeller mass seems to be liable to 2-node torsional vibration of crankshaft, it is recommend that, in the design stage of propulsion shafting, its torsional vibration condition must be more carefully checked.

  • PDF