• Title/Summary/Keyword: ship motions

Search Result 291, Processing Time 0.026 seconds

Nonlinear Motion Responses of a Moored Ship beside Quay (안벽에 계류된 선박의 비선형 운동응답)

  • 이호영;임춘규;유재문;전인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

The Lateral Motion Responses of a Ship with Rudder Effects in the Time Domain (타(舵)의 효과(效果)를 고려(考慮)한 시간영역(時間領域)에서의 선체(船體) 횡운동응답(橫運動應答))

  • I.Y.,Gong;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 1984
  • In this paper, the lateral motions of a ship in the time domain are treated by applying the Impulse Response Function Technique. The acceleration, and displacement of a ship in the time domain are needed for the purpose of such automatic controls as the fire control system and the auto-pilot of ocean-going vessels, etc. The response Amplitude Operators of a ship are calculated by the Strip Method of Salvesen-Tuck-Faltinsen, and the Pierson-Moskowitz Spectrum multiplied by spreading function is used to represent the short crested ocean waves. The ocean wave elevations in the time domain are simulated according to the Method of Borgman. Finally the rudder effect is considered by simply adding the force and moment due to the rudder to the wave exciting force. And the results of lateral motions with and without rudder are shown.

  • PDF

Motion Prediction of the Small-Waterplane-Area Twin-Hull Ship (최소수선면적 쌍동선(SWATH)의 운동특성해석)

  • Sang-Moo,Lee;Young-Whan,Kim;Do-Chun,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 1986
  • Recently, the SWATH concept hull form which is capable of high speed navigation with small oscillatory motions in waves, was developed from the catamaran type hull forms. This paper discribes a method to predict motion responses of a SWATH ship in regular waves using the strip theory. The 2-dimensional hydrodynamic problem was solved using the improved Green integral equation which is free from the irregular frequencies. The effects of viscous drag which is dominant in heave damping of the SWATH ship are taken into account. Further, the effects of the stationary stabilizing fins which is important in high speed performance of the SWATH ship are included in the equation of motions. It seems that the motion responses calculated by the present method show better agreement with experimental results than other existing numerical results.

  • PDF

Distribution Evaluation of the Ship's Navigational Safety Using Dangerousness on the Korean Coast (연안 여객선의 내항성능 위험도를 이용한 항해 안전성 평가에 관한 연구)

  • 김철승;정창현;김순갑;공길영;설동일;이윤석
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.31-40
    • /
    • 2003
  • There are winds and waves in the sea, and they are changed frequently in accordance with the weather. By analyzing them which have the closest relation to the ship's safe voyage. evaluating the seakeeping performance and then taking a proper action, navigators should carry out safe navigation on the sea. A ship in seaways suffers continuous disturbances by irregular waves, and ship motions with irregular waves cannot be easily described as a system model which is adequate to a control system. But, in general, for seakeeping analysis, ship motions in irregular seas can be estimated by the superposition of the motion responses in regular wave components of the sea spectrum. After comparing and analyzing the winds and waves in major sea areas, this paper evaluates the navigational safety of ships on the Korean coast with potential dangerous seakeeping performance using the weather information provided by land. The conclusion is as follows : (1) It is possible that the safety of ships could be secured more accurately by evaluating the seakeeping performance of ships. (2) When the weather is bad, the departure of ships could be controlled by evaluating the navigational safety of ships. (3) When a ship is placed in commission in any area, this evaluation could be used to decide the type and size of ship in use.

  • PDF

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.

On the Motion Characteristics of Small Trawler under Operation (소형 트롤 어선의 예망중 동요특성)

  • Lee, Chun-Ki;Kang, Il-Kwon;Kim, Jeong-Chang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • This paper deals with an experimental study on the dynamical characteristics of ship motion during trawling job on the real sea. The experiments were carried out on the small stern trawler, and roll and pitch motion of the ship according to the wave directions were simultaneously recorded by P/C in the same sea conditions. From these data, the statistical properties and power spectra were obtained, and then the analysis of ship motion in trwal job was made. As a result, it was found that the pitch motions in trwal job were displayed low amplitudes on the whole, but the rolling motions were displayed high amplitudes relatively, and very high value on the beam and quartering sea especially. Also, the trial ship has a high extinction coefficient in the roll motion, compared with the rule of stability, but when wave height takes 2.5m over, it can induce the safety of ship to scare occasionally. Therefore, a usefull countermeasure for the safety of ship has to be made adequately.

A comparison study of water impact and water exit models

  • Korobkin, Alexander;Khabakhpasheva, Tatyana;Malenica, Sime;Kim, Yonghwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1182-1196
    • /
    • 2014
  • In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.

Investigation of Seakeeping Performance of Trawler by the Influence of the Principal Particulars of Ships in the Bering Sea

  • Thi Thanh Diep Nguyen;Hoang Thien Vu;Aeri Cho;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Investigating ship motion under real conditions is vital for evaluating the seakeeping performance, particularly in the design process stage. This study examined the influence of the principal particulars of a trawler on its seakeeping performance. The wave conditions in the Bering Sea are investigated using available data. The length-to-beam (L/B) and beam-to-draft (B/T) ratios of the ship are changed by 10% for the numerical simulation. The response amplitude operator (RAO) motion, root mean square (RMS) value and sensitivity analysis are calculated to evaluate the influence of the trawler dimensions on ship motions. The peak RAO motion affected the ship motions noticeably because of the resonance at the natural frequency. The L/B and B/T ratios are important geometric parameters of a ship that significantly influence its RMS motion, particularly in the case of roll and pitch. The change in the B/T ratio has a good seakeeping performance based on a comparison of the roll and pitch with the seakeeping criteria. The present results provide insights into the seakeeping performance of ships due to the influence of the principal dimensions in the design stage.

A Research on Ship Speed Performance (선박의 속력성능에 관한 연구)

  • 권영중
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.67-71
    • /
    • 2003
  • Using motions (Maruo) and wave reflection (the author), speed loss due to wind (van Berlekom) and ITTC standard spectrum, and various effects of weather(:such as weather intensity, ship type, ship size and draught) on ship speed performance at sea were investigated. Further, a comparison of the relative effects of weather and hull roughness on speed loss was also studied for a VLCC.

Hydrodynamic Forces and Manoeuvring Characteristics of Ships at Low Advance Speed (저속시 선체에 작용하는 조종유체력 및 조종성능에 관한 연구)

  • Sohn, Kyoung-Ho
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.4
    • /
    • pp.27-39
    • /
    • 1991
  • One practical method has already been proposed for predicting the characteristics of ship manoeuvring motions at relatively high advance speed [19]. Howeverf, this method can hardly be applied to motions of ships in starting, stopping, backing and slow steaming conditions, even though such extensive motions are of vital importance from a safety point of view particularly in harbour areas. The method presented here aims at predicting the characteristics of ship manoeuvring at low advance speed, which covers starting, stopping, backing and slow steaming conditions. The force mathematical models at large angles of incidence to the hull as well as under the wide range of propeller operations are formulated. Simulations of various manoeuvres at low advance speed are carried out for two types of merchant ship, I.e. a LNGC and a VLCC. Comparisons between simulations and corresponding full-scale measurements [10], [15] or free-running model tests [6],[10] provide a first verification of the proposed mathematical models.

  • PDF