• Title/Summary/Keyword: ship motion compensation

Search Result 12, Processing Time 0.026 seconds

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

A comparative study of different active heave compensation approaches

  • Zinage, Shrenik;Somayajula, Abhilash
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.373-397
    • /
    • 2020
  • Heave compensation is a vital part of various marine and offshore operations. It is used in various applications, including the transfer of cargo between two vessels in the open ocean, installation of topsides of an offshore structure, offshore drilling and for surveillance, reconnaissance and monitoring. These applications typically involve a load suspended from a hydraulically powered winch that is connected to a vessel that is undergoing dynamic motion in the ocean environment. The goal in these applications is to design a winch controller to keep the load at a regulated height by rejecting the net heave motion of the winch arising from ship motions at sea. In this study, we analyze and compare the performance of various control algorithms in stabilizing a suspended load while the vessel is subjected to changing sea conditions. The KCS container ship is chosen as the vessel undergoing dynamic motion in the ocean. The negative of the net heave motion at the winch is provided as a reference signal to track. Various control strategies like Proportional-Derivative (PD) Control, Model Predictive Control (MPC), Linear Quadratic Integral Control (LQI), and Sliding Mode Control (SMC) are implemented and tuned for effective heave compensation. The performance of the controllers is compared with respect to heave compensation, disturbance rejection and noise attenuation.

Analysis for the stabilizer design of the large driving system (대형 구동시스템의 안정화장치 설계에 관한 연구)

  • 김광태;이양원;이봉기;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.113-117
    • /
    • 1989
  • Generally, stabilization system is surely needed for the compensation of the ship motion. In this paper, the study investigated stabilizer design for the large driving system. We make a performance analysis for the stabilization scheme through the computer simulation.

  • PDF

Design and Performance Evaluation of Controller for Unstable Motion of Underwater Vehicle after Water Entry (수중운동체 입수 초기의 불안정 거동에 대한 제어기 설계 및 성능평가)

  • Park, Yeong-Il;Ryu, Dong-Ki;Kim, Sam-Soo;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.166-175
    • /
    • 1999
  • This paper describes a design and performance evaluation of robust controller which overrides unstable motion and pulls out quickly after water entry of underwater vehicle dropped from aircraft or surface ship. We use 6-DOF equation for model of motions and assume parameter uncertainty to reflect the difference of real motion from modelled motion equation. we represent a nonlinear system with uncertainty as Takagi and Sugeno's(T-S) fuzzy models and design controller stabilizing them. The fuzzy controller utilizes the concept of so-called parallel distributed compensation (PDC). Finally, we confirm stability and performance of the controller through computer simulation and hardware in the loop simulation (HILS).

  • PDF

A study on the tracking antenna system for DBS receive on a ship (선박용 DBS수신 추적안테나 시스템의 구현)

  • 최조천;양규식;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2236-2245
    • /
    • 1997
  • The DBS system is being highlighted as actual area for the information societics. Specially, the DBS have been proposed very useful system to access the broading service in more widely sea. But the antenna tracking system for maritime DBS receiving is requried complicated control system because of the those complex motion represented pitching, rolling and yowing etc. Our resesrch target is a development of tracking system to the KOREASEA(MUGUNGWHA-1,2) for the applicated small size shipping. So our development focus was concentrated the two development direction. The first focus was represented low-cost system for popularization of small-size shipping around sea of the Korea peninsula. The second focus was an adaptive possibilities with domestic eqdupiment which was developed satellite receiving for KOREASAT. The anntenna mount is designed a compact size and easy operation use to the Az/El 2-axis type which is operated by step motor. And this mount type is very useful on a ship in the near sea of Korea peninsula. Basic tracking method is used th step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Control part is consists of converter, countertime, VCO, micro-computer and it's software. Testing the operation by the ship's moving simulator, and algorithm is designed tracking and moving compensation by receiving state.

  • PDF

Design of e-compass with terrestrial magnetic compensation for a ship (선박용 지자기 보정 기능을 갖는 이동식 전자컴퍼스 개발)

  • Hong, Chang-Hyun;Kim, Yung-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.381-382
    • /
    • 2007
  • Recently fishing industry is interested in efficient and automated fishing implementations to reach the level of the international leading technology. One of the important device used in fishing boat is an automated electric compass that harnesses the GPS and terrestrial magnetic sensor. The electric compass is desired to be minimized in size while keeping a high effectiveness in the characteristic of a magnetic compass. This device also can be used as a heading angle sensor to construct auto-navigation system in a small size of ships. However, there exists measurement errors induced from the slope of terrestrial magnetic sensor caused by the motion of boat. In this paper, a method has been proposed removing the measurement error arising from the slope of terrestrial magnetic sensor when the ship is in motion. We have designed a sensor with two DOF(degree of freedom) and a weight to maintain the horizontality of the sensor. Through this research, the hardware has been designed and also a test has been performed. The test shows a promissory result.

  • PDF

A Study on RCS and Scattering Point Analysis Based on Measured Data for Maritime Ship (실측자료 기반 함정 RCS 측정 및 산란점 분석 연구)

  • Jung, Hoi-In;Park, Sang-Hong;Choi, Jae-Ho;Kim, Kyung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • In order to set up radar cross section(RCS) reduction factors for a target, the scattering point position of the target should be identified through inverse synthetic aperture radar(ISAR) image analysis. For this purpose, ISAR image focusing is important. Maritime ship is non-linear maneuvering in the sea, however, which blur the ISAR image. To solve this problem, translational and rotational motion compensation are essential to form focused ISAR image. In this paper, hourglass and ISAR image analysis are performed on the collected data in the sea instead of using the prediction software tool, which takes much time and cost to make computer-aided design(CAD) model of the ship.

Theoretical Approach of Development of Tracking Module for ARPA system on Board Warships

  • Jeong, Tae-Gweon;Pan, Bao-Feng;Njonjo, Anne Wanjiru
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.53-54
    • /
    • 2015
  • The maritime industry is expanding at an alarming rate and as such there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking system described herein comprises determining existing states of own ship, state prediction and state compensation caused by random noise. The purpose of this paper is to analyze the process of tracking and develop a tracking algorithm by using ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise or irregular motion for use in a warship. The algorithm involves initializing the input parameters of position, velocity and course. The actual positions are then computed for each time interval. In addition, a weighted difference of the observed and predicted position at the nth observation is added to the predicted position to obtain the smoothed position. This estimation is subsequently employed to determine the predicted position at (n+1). The smoothed values, predicted values and the observed values are used to compute the twice distance root mean square (2drms) error as a measure of accuracy of the tracking module.

  • PDF

A study on the stabilization and controller design for directional pan-tilt system (지향성 Pan-Tilt 시스템의 안정화와 제어기 설계에 관한 연구)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.192-198
    • /
    • 2013
  • This paper presents the stabilization and design of a pan-tilt control part for the directional pan-tilt system for shipboard directional equipment. In order to control each control axis with compensation for ship motion, the 2 degree of freedom(2DOF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the 2 DOF PID controller tuning.

Tracking and Stabilization of a NV System for Marine Surveillance (해상감시용 NV 시스템의 추종 및 안정화)

  • Hwang, Seung-Wook;Kim, Jung-Keun;Song, Se-Woon;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper presents the tracking and stabilization problem of a night vision system for marine surveillance. Both a hardware system and software modules are developed to control azimuth and elevation axes independently with compensation for ship motion. A two degree of freedom(2DOF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the proposed method.