• Title/Summary/Keyword: shielding effectiveness (SE)

Search Result 69, Processing Time 0.025 seconds

Analysis of Shielding Effectiveness of Low Conductivity Shield Layers within Near-field Region (근거리장에 놓인 저전도율 차폐막의 차폐 효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of shielding layers thickness was analyzed when the low conductivity shielding layers was placed in the near field of the noise source. A spiral antenna with broadband characteristics was used as the noise source, and graphite was selected as the low conductivity shielding material. Two spiral antennas were constructed to analyze the transmission coefficient between two antennas, and the distances between the transmitting and receiving antennas were 5 cm and 10 cm. The thickness of the shielding layers was changed from 1 um to 200 um. The frequency was changed from 100 MHz to 6 GHz to obtain a maximum SE(Shielding Effectiveness) of 70 dB. In this simulation, electronic shielding was used due to the nature of graphite, which is a shielding film material. Based on these results, we will study how to improve the shielding performance by implementing magnetic shielding in the future.

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

A Study on Electromagnetic Interference Shielding Effectiveness of the Metal Powders and Nano Carbon black /Fiber Reinforced Epoxy composites (메탈 파우더와 나노 카본 블랙/섬유강화 복합재료의 전자파 차폐효과에 관한 연구)

  • Han Gil-Young;Kim Jin-Seok;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.100-107
    • /
    • 2006
  • The objective of this research is to investigate the electromagnetic interference(EMI) shielding characteristics of fiber reinforced composites. We fabricated glass and carbon fiber reinforced composites filled with metal powder and nano carbon black. The measurements of shielding effectiveness(SE) were carried out frequency range 300MHz - 1GHz for commercial purposes such as electric or telecommunication devices. The return loss and loss due to absorption were also measured as a function of frequency in the micro wave(300MHz-1GHz) region. It is observed that the SE of the composites is the frequency dependent, increase with the increases in filler loading. The Mg metal powder filled composite showed higher SE compared to that of carbon black. The Mg metal powder/epoxy composite was shown to exhibit up to 40dB of SE. The results indicates that the composite having higher filler loading can be used for the purpose of EMI shielding as well as for some microwave applications.

Analysis for Shielding Effectiveness of Metal Shielding Layer within Near-Field of Noise Source (노이즈 소스 근거리장에 위치한 금속 차폐막의 차폐효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of the shielding layer thickness was analyzed when the metal shielding layer was placed in the near field of the magnetic probe and the noise source. Microstrip lines were used as noise source, and graphite and ferrite were selected as metal shielding materials. The magnetic probe uses the electromagnetic radiation measurement method using the magnetic probe by applying the IEC 61967-6 method. The transmission coefficient between the microstrip line and the magnetic probe was analyzed. The distance between the two was 1 mm for a single shielding layer and 5 mm for a multiple shielding layer. The thickness of the shielding layer was changed to 5 um, 10 um, 30 um, and 50 um. When the frequency was changed from 150 kHz to 1 GHz, a maximum shielding effectiveness (SE) of 44.9 dB was obtained.

The Evaluation of the Characteristics of Electromagnetic Waves on CFRTP for Multimedia Instrument Applications (Multimedia 기기에의 적용을 위한 CFRTP에 대한 전자파 특성의 평가)

  • ;Ri-ichi Murakami
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.254-263
    • /
    • 1997
  • As the communication and electronic industry develops, it is important to study the electromagnetic shielding effectiveness (SE) of carbon fiber (CF) reinforced thermal plastics (CFRTP) against the electromagnetic (EM) radiation. In this paper the shielding effectiveness of CFRTP was measured experimentally in an electromagnetic shielding room. The resin ma- terials used were PC, PP, PEI, PMMA and PA. Experiments were carried out by using a copper box and a monopole antenna with a spectrum analyzer. From the experimental results it was found that CF was a good candidate as an electromagnetic shielding material. The sheilding effectiveness was found to be increased in the composite as the number of laminated layers of CF was increased. As the minor damage increased, the SE increased due to increasing of the plane density, transmitting thickness and reflected angle of the CF. Other characteristics of the SE depended on the material used for the resin matrix, distance of the antennas and the noise frequency band.

  • PDF

EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites

  • Yim, Yoon-Ji;Chung, Dong Chul;Park, Soo-Jin
    • Carbon letters
    • /
    • v.22
    • /
    • pp.36-41
    • /
    • 2017
  • Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor ($K_{IC}$) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.

Electromagnetic Shielding Effectiveness of Melt-blown Nonwoven Fabric with Width and Interval of Thin Copper Film (구리박막의 넓이와 간격에 따른 melt-blown 부직포의 전자파 차폐 효과)

  • Shin Hyun Sae;Son Jun Sik;Kim Young Sang;Jeong Jin Soo
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.42-47
    • /
    • 2004
  • The main objective of this work is to develop melt-blown nonwoven fabric composite materials have electromagnetic shielding characteristics using thin copper film. Melt-blown nonwoven fabric is the matrix phase and thin copper films are the reinforcement of the composite materials. Thin copper films are incorporated as conductive fillers to provide the electromagnetic shielding property of the melt-blown nonwoven fabric. The width and interval of thin copper films in the nonwoven fabric are varied by changing 1, 3, 5 mm for thin copper film's width and 1, 3, 5 mm for thin copper film's interval. The shielding effectiveness(SE) of various melt-blown nonwoven fabrics is measured in the frequency range of 50 MHz to 1.8 GHz. The variations of SE of melt-blown nonwoven fabric with width and interval of thin copper films are described. Suitability of melt-blown nonwoven fabric for electromagnetic shielding applications is discussed. The results indicate that the melt-blown nonwoven fabric composite material using thin copper film can be used for the purpose of electromagnetic shielding.

EMI Shielding Efficiency of Recycled plastic/Hybrid Conductive filer Composites filled Electro Arc furnace Slag (제강Slag 충진 폐플라스틱/복합 전도성 filler복합재료의 전자파 차폐 효과)

  • Kang Young-Goo;Song Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.80-85
    • /
    • 2004
  • Electromagnetic interference(EMI) shielding characteristics of composite filled with Cu flake and carbon brush powder as hybrid conductive filler and EAF slag have been studied. The coaxial transmission line method of ASTM D4935-99 was used to measure the EMI Shielding effectiveness of composites as formulation in frequency rage $100\~1,000MHz$ The SE also increases with the increase in flier loading. The hybrid filler filled composites show higher SE compared to that of only Cu flake. The correlation between SE and conductivity of the various composites is also discussed. The results indicate that the composites having higher filler loading$({\geq}40wt.\%)$ can be used for the purpose of safety materials to protect hazardous electromagnetic interference.

Measurements and Analysis of Electromagnetic Shielding Effectiveness of PDP TV Screen Filters (PDP TV Screen Filter의 Shielding Effectiveness 측정 및 분석)

  • Park, Gyu-Bok;Kim, Yoon-Jung;Kim, Young-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.47-53
    • /
    • 2003
  • Screen filter of PDP TV plays an important role in satisfying the EMI/EMC specifications. Two types of filters, the mesh type and the sputter type, are used in PDP TVs, and this paper presents measurement results of the shielding effectiveness (SE) in the frequency range from 50MHz to 1GHz. Two methods were used for the measurement, one using network analyzer (NA) in an open area test site(OATS), and the other using the screen room. The overall conclusion is that the shielding effectiveness of the screen filter is related to the surface resistance of the screen filter. The mesh type screen filters are superior to the sputter types in the shielding effectiveness, which is varying with the frequency.

  • PDF

Estimation of the Penetrated Pulse using Measured Shielding Effectiveness (측정된 전자파 차폐율을 이용한 시스템 내부 침투파형 예측)

  • Kang, Rae-Choong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1121-1128
    • /
    • 2011
  • The HEMP has very short rising time with several tens of kV/m, and very dangerous to almost of the electronics. And the certain level of EMP shielding effectiveness is necessary for mos t of the systems andequipment. In EMP shielding effectiveness, the peak value and the rising time in the system are the most considerable parameters. In order to find out these parameters, we need to estimate the pulse shape in time domain. In this paper, we propose the methods to estimate the penetrated pulse in time domain using measured shielding effectiveness and digital filter modeling technique. The validity of the Digital filter modeling technique is verified by the HFSS.