• Title/Summary/Keyword: shield-tunnel segment lining

Search Result 41, Processing Time 0.025 seconds

State of the Art of Segment Lining in Shield Tunnel and Statistical Analysis of Its Key Design Parameters (쉴드터널 세그먼트 라이닝의 최신 기술동향과 핵심 설계항목의 통계 분석)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Choi, Soon-Wook;Bae, Gyu-Jin
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.427-438
    • /
    • 2011
  • Segment lining is a key permanent lining structure to maintain the shield tunnel stability in shield tunnel operation. Moreover, segment lining generally accounts for the largest proportion in the shield tunnel construction costs. As a result, technical improvements to increase its economic feasibility have been actively carried out. This study aims to propose the development directions of high-performance segments from their recent cutting technologies. In addition, based on over 2,100 world-widely collected segment design data, a series of statistical analyses of segment key design parameters such as thickness, width and the number of divisions as well as segment materials were carried out to approximately estimate them in a design stage.

Analysis and Structural Behavior of Shield Tunnel Lining Segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Lee, Hwan-Woo;Kim, Gwan-Soo;Kim, Gwang-Yang;Kang, Dae-Hui
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.757-762
    • /
    • 2007
  • The lining segment which is the main structure of the shield tunnel consists of joints, not continua. Past international and domestic design data have been commonly used for design practices without specific verification about the structural analysis model, design load, and affection of the soil constant of the lining segment. In this study, the propriety is estimated through the comparison between analytical solution and numerical solution for segment analysis and design models of the shield tunnel which is being used internationally and domestically. As a result, the full. circumferential beam jointed spring model (1R-S0) is suggested by considering aspects of convenient use, application to field condition, and accuracy of analysis result. With suggested model, the parameter analysis was conducted for joint stiffness, ground rigidity, joint distribution, and joint number.

  • PDF

A study on the factors influencing the segment lining design solved by beam-spring model in the shield tunnel (쉴드 터널 세그먼트 라이닝 설계에서 빔-스프링 구조 모델이 단면력에 미치는 영향)

  • Kim, Hong-moon;Kim, Hyun-su;Shim, Kyung-mi;Ahn, Sung-youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.179-194
    • /
    • 2017
  • The segment lining design for shield tunnel is generally carried out by using the beam-spring model and the induced member forces from the model are strongly influenced by the components of the model such as imposed load, coefficient of subgrade reaction, location of segment joint and its stiffness. The structural models and stiffness of its connection part found used in abroad design cases is usually obtained as it is for the domestic design of segment of shield tunnel. Those models and stiffness in existing design cases are conventionally applied to a new tunnel design without any suitability review for the project. In this study, the application method of base components of the model such as the coefficient of subgrade reaction and modelling method to the segment lining design was suggested by carrying out the comparative study of the base elements for the member forces estimation of segment lining of shield tunnel.

Study on improving method of arranging trapezoidal pre-cast segment lining in shield tunnel (쉴드터널의 사다리꼴 세그먼트라이닝 배열방법 개선에 대한 연구)

  • Kim, Jung-Hyun;Kang, Kyung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • This study is about an arrangement method of trapezoidal pre-cast segment lining that can be applied in shield tunnel construction. Trapezoidal segment lining is formed by assembling tapered pre-cast concrete segments taking advantage of the tapered shape of pre-cast segments upon delivery on site. By calculating tapering of the segments manufactured in single type and rotating the segments when putting them together, a variety of tunnel alignments can be arranged in the most efficient way. Once the design criteria and tunnel alignment (straight or curved) is analyzed, the sequence of assembling trapezoidal segments in compliance with tunnel alignment will be computed. On site an operator can utilize the softwareto automatically determine sequential arrangement of trapezoidal segments. When the actual arrangement of segmental lining is different from the computed output, the operator can input the actually measured values to coincide the computerized calculation with the real status of assembly. Then the adjustment will be the basis of subsequent arrangement of segments, thus the continuity of work can be guaranteed.

  • PDF

A comparative study on methods for shield tunnel segment lining sectional forces (쉴드 터널 세그먼트 라이닝의 부재력 산정법 비교연구)

  • Yoo, Chung-Sik;Jeon, Hun-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.159-181
    • /
    • 2012
  • The segment lining which consists of segments and joints are main component of shield tunnel. There are a number of methods that are being used in design which compute the sectional forces of a ring of segment lining. The traditional design methods which do not consider the effect of joints have been commonly used for design procedure without a specific verification of structural analysis. This paper presents the result of a comparative study for analytical and numerical models of the shield tunnel segment lining. For the traditional methods, the elastic equation method and the Duddeck & Erdmann method were considered. The ring-beam and the continuum analysis model were also considered as the numerical model.

Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints

  • Ding, Wen-Qi;Peng, Yi-Cheng;Yan, Zhi-Guo;Shen, Bi-Wei;Zhu, He-Hua;Wei, Xin-Xin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.337-354
    • /
    • 2013
  • For shield TBM (Tunnel Boring Machine) tunnel lining, the segment joint is the most critical component for determining the mechanical response of the complete lining ring. To investigate the mechanical behavior of the segment joint in a water conveyance tunnel, which is different from the vehicle tunnel because of the external loads and the high internal water pressure during the tunnel's service life, full-scale joint tests were conducted. The main advantage of the joint tests over previous ones was the definiteness of the loads applied to the joints using a unique testing facility and the acquisition of the mechanical behavior of actual joints. Furthermore, based on the test results and the theoretical analysis, a mechanical model of segment joints has been proposed, which consists of all important influencing factors, including the elastic-plastic behavior of concrete, the pre-tightening force of the bolts and the deformations of all joint components, i.e., concrete blocks, bolts and cast iron panels. Finally, the proposed mechanical model of segment joints has been verified by the aforementioned full-scale joint tests.

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF

Numerical study on the connection type of inner-slab in double deck tunnel (복층터널 내부슬래브의 연결형식에 관한 수치해석적 연구)

  • Lee, Ho-Seong;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.441-451
    • /
    • 2016
  • This study analyzed behavior of the segment lining considering connection type between inner-slab and segment lining for a double deck tunnel by Shield TBM. In order to establish the design requirements of inner-slab and segment lining in double deck tunnel, inner structure of double deck tunnel at each purpose was analyzed and compared connection type between inner-slab and segment lining. And analyses have been carried out through the beam-spring model by MIDAS Civil 2012. As a result of this study, inner-slab, connection type of between inner-slab and segment lining and Lateral earth pressure coefficients were analyzed to verify the significant design factors.

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.

Reliability analysis for design of shield tunnel segment lining under earthquake load (쉴드 터널 세그먼트 라이닝의 내진설계를 위한 신뢰성해석)

  • Park, Young-Bin;Kim, Do;Byun, Yosep;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • Design criteria for limit state design of underground structures have already been published overseas, and research has been conducted to revise the design method in Korea. In order to estimate the probability of failure under seismic load, the probability variable should be considered in the reliability analysis. In this study, the failure probability of the existing shield tunnel segment lining design was calculated by applying the coefficient of variation (COV) for the earth pressure and the seismic load effect in consideration of the statistical characteristics of the domestic ground properties. Based on the results of calculating the reliability index (β) from the calculated probability of failure and analyzing the reliability index according to the change in the load factor and the results of domestic and foreign research, the target reliability index (βT) during earthquakes of shield tunnel segment lining is analyzed to be "2.3", it was proposed as the target reliability index for the design of the limit state under seismic load.