• Title/Summary/Keyword: shield tunnel

Search Result 265, Processing Time 0.026 seconds

A study on the establishment of domestic criteria through analysis of shield TBM requirements in overseas ITB (Invitation to Bid) (해외 쉴드TBM 입찰안내서 분석을 통한 국내 발주 기준 정립에 관한 연구)

  • Kim, Ki-Hwan;Kim, Hyouk;Mun, Cheol-Hwa;Kim, Young-Hyu;Kim, Dong-Ho;Lee, Jae-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.985-997
    • /
    • 2017
  • In many countries, most of the tunneling works have been ordered by the shield TBM, and also Korean companies are actively bidding and execute in this project. In case of Korea, refurbished machines are mainly using in power cable, gas pipelines, and water and sewage tunnel. Also in metro projects, shield TBM of over diameter 7m is required mainly by using brand new machine. Since the shield TBM is not easy to change once it is produced, it is necessary for the client to provide sufficient information on the production conditions so as to satisfy various characteristics of the construction. In this study, to manufacturing optimal shield TBM, the Client's TBM requirements of tunnel construction in Hong Kong and UK was analyzed and compared with the domestic requirements. The results are expected to provide as client's guidelines for bidding stage and manufacturing for shield TBM tunneling in Korea in the future.

Study on selection and basic specifications design of shield TBM for power cable tunnels (터널식 전력구 쉴드TBM 선정 및 기본설계 사양 제시에 관한 연구)

  • Jung Joo Kim;Ji Yun Lee;Hee Hwan Ryu;Ju Hwan Jung;Suk Jae Lee;Du San Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2023
  • Power cable tunnels is one of the underground structures meant for electricity transmission and are constructed using shield TBM method when transitting across urban and subsea regions. With the increasing shaft depth for tunnels excavation when the shield TBM excavated the rock mass, the review of selecting closed-type shield TBM in rocks becomes necessary. A simplified shield TBM design method is also necessary based on conventional geotechnical survey results. In this respect, design method and related design program are developed based on combined results of full-scale tests, considerable amount of accumulated TBM data, and numerical simulation results. In order to validate the program results, excavation data of a completed power cable tunnel project are utilized. Thrust force, torque, and power of shield TBM specification are validated using Kernel density concept which estimates the population data. The robustness of design expertise is established through this research which will help in stable provision of electricity supply.

Determination of Segment Sealing Material for a shield TBM tunnel under the Han river in the Bundang railway (분당선 철도 한강 하저터널에서 세그먼트 방수재 선정)

  • Kim Yong-Il;Kim Dong-Hyun;Hwang Nak-Yeon;Jang Sung-Wook;Kim Jang-Su;Hyung Tae-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1188-1196
    • /
    • 2004
  • In this paper a determination of the optimal segment sealing material for a tunnel under the Han river between the Sungsoo-dong, Sungdong-Gu and the Chungdaw-dong, Kangnam-Gu in the Bundang railway. The geological investigation results show that some fractured zones exist loca]]y under the northern boundary of the Han river bed, but the other regions consist mostly of hard rocks of good Quality in the tunnel excavation level. Also, a hign water pressure of $5kgf/cm^2$ and a flash inflow of river water due to old boring holes are expected during tunnel excavation. A combined type sealing material of EPDM gasket with expansional rubber is selected as a optimal segment sealing material for the Han river tunnel considering the geological and site conditions.

  • PDF

A Case Study of Delay Analysis for E.P.B Shield TBM Method in Construction Site (E.P.B(Earth Pressure Balance) Shield TBM 공사의 공기지연 사례연구)

  • Kwak, Jun-Hwan;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.737-743
    • /
    • 2009
  • Shield TBM, since it was employed for Suyoungman Bay riverbed tunnel of Busan Subway in 2000,has been increasingly adopted in Korea, and in line with growing popularity, the study on Shield TBM has been expanded. However the studies mostly focus on ground condition in a bid to estimate the advancement rate and develop the model for calculating the excavation efficiency, whereas the efforts to analyze the cause of delay and to develop the improvement measures have been neglected. Thus the studies were mostly intended to analyze the schedule slippage focusing on ground conditions, while the study on schedule behind due to equipment itself and related facilities have yet to be attempted in earnest. This study hence was aimed at evaluating the troubles and schedule slippage caused by mechanical elements such as shield TBM equipment and tools and ground conditions, making use of FMEA approach so as to analyze the risk of schedule delay by such elements, thereby proposing the preventive measures to deal with high-risk factors. So, this study suggest the solution to highly ranked trouble factor for the purpose of enhance the efficiency on Shield TBM.

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

A study on the optimal reinforced zone of a small sectional shield TBM tunnel in difficult ground (특수지반 구간의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung-Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.735-747
    • /
    • 2019
  • Due to the lack of ground space by urbanization, the demand of utility tunnels for laying social facilities is increasing. During the construction of a utility tunnel in downtown area using a shield TBM, various problems may occur when difficult ground is encountered such as mixed ground and cobbly ground. Thus, in this study, using MIDAS GTS NX (Ver. 280), a numerical analysis was performed on characteristics of difficult ground, reinforced area, depth of cover and groundwater level to analyze the optimal ground reinforced area according to combination of parameters. As a result, it was difficult to secure stability in unconstrained excavation cases on both the mixed ground and the cobbly ground. However, when ground reinforcement grouting as much as 2.0D is applied, convergence occurred within the allowable limit, except for mixed ground with a depth of cover 30 m. In addition, excessive leakage occurred during excavation of both the mixed ground and the cobbly layers. It was able to secure stability after applying waterproof grouting.

Development of optimal cross-section design methods for bored utility tunnels: case study of overseas typical cross-sections and design criteria (터널식 공동구 최적단면 설계기술 개발: 해외 표준단면 사례 및 설계기준 분석)

  • Park, Kwang-Joon;Yun, Kyoung-Yeol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1073-1090
    • /
    • 2018
  • Since the domestic utility tunnels were built mainly in the development project of the new city, they are all in the form of cut-and-cover box tunnel. But, in the case of overseas construction of utility tunnels for existing urban areas, the bored tunnel types are mainly adopted. It is reasonable to install bored tunnels in a downtown area because it is difficult to block the roads or install bypass roads due to heavy traffic and civil complaints. In order to activate the utility tunnels in bored type, it is necessary to secure optimized cross-sectional design technology considering the optimal supplying capacity and mutual influencing factors (Thermal Interference, electrolytic corrosion, efficiency of the maintenance, etc.) of utilities (power cables, telecommunication cables, water pipes, etc.). The optimal cross-section design method for bored utility tunnels is ultimately to derive the optimal arrangement technique for the utilities. In order to develop the design methods, firstly, the cases of tunnel cross-section (Shield TBM, Conventional Tunneling) in overseas shall be investigated to analyze the characteristics of the installation of utilities in the section and installation of auxiliary facilities, It is necessary to sort out and analyze the criteria related to the inner cross-section design (arrangement) presented in the standards and guidelines.

A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel (토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구)

  • Jung, Jee-Hee;Kim, Byung-Kyu;Chung, Heeyoung;Kim, Hae-Mahn;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2019
  • This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.

Reliability analysis of surface settlement during shield TBM tunneling (쉴드 TBM 터널 굴착시 지표침하에 관한 신뢰성해석)

  • Han, Myeong-Sik;Cho, Kuk-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.305-318
    • /
    • 2016
  • This study is to evaluate the uncertainty of the soil parameters associated with the Gap parameter during shield TBM tunnel excavation of ${\bigcirc}{\bigcirc}$ International Airport Terminal 2 connecting railway construction basic design. And This study is to evaluate the adequacy of the shield TBM design by performing a reliability analysis of the Surface settlement. In addition, By analyzing the reliability indices of the design constants and Sensitivity probability of failure to be used in designing an integer parameter Gap, and By evaluating the design constants of a great influence on the surface subsidence, it was to provide a basis for carrying out an optimum design.

Favorable driving direction of double shield TBM in deep mixed rock strata: Numerical investigations to reduce shield entrapment

  • Wen, Sen;Zhang, Chunshun;Zhang, Ya
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.237-245
    • /
    • 2019
  • In deep mixed rock strata, a double shield TBM (DS-TBM) is easy to be entrapped by a large force during tunneling. In order to reduce the probability of the entrapment, we need to investigate a favorable driving direction, either driving with or against dip, which mainly associates with the angle between the tunneling axis and strike, ${\theta}$, as well as the dip angle of rock strata, ${\alpha}$. We, therefore, establish a 3DEC model to show the changes of displacements and contact forces in mixed rock strata through LDP (longitudinal displacement profile) and LFP (longitudinal contact force profile) curves at four characteristic points on the surrounding rock. This is followed by a series of numerical models to investigate the favorable driving direction. The computational results indicate driving with dip is the favorable tunneling direction to reduce the probability of DS-TBM entrapment, irrespective of ${\theta}$ and ${\alpha}$, which is not in full agreement with the guidelines proposed in RMR. From the favorable driving direction (i.e., driving with dip), the smallest contact force is found when ${\theta}$ is equal to $90^{\circ}$. The present study is therefore beneficial for route selection and construction design in TBM tunneling.