• Title/Summary/Keyword: shellfish toxin

Search Result 54, Processing Time 0.028 seconds

Paralytic Shellfish Poisoning Toxin Accumulation in Four Mussel Species Fed on Toxic Alexandrium tamarense (독성 Alexandrium tamarense를 섭취한 담치류 4종의 마비성패독 축적)

  • Kim, Young-Soo;Shon, Myung-Back;Kim, Chang-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • Cultured cells of the toxic Alexandrium tamarense were fed to four mussel species, Mytilus coruscus, M. edulis, M. galloprovincialis and Septifer vulgatus, to examine the interspecies and interlocality differences in the ability to accumulate paralytic shellfish poisoning (PSP) toxins. Toxin content of A. tamarense cells varied during culture period. In contrast, toxin composition in the cell (C1,2, GTX1-4 and neoSTX) was constantly stable. In feeding experiment, the four mussel species collected from Geoje intoxicated after uptake of A. tamarense. Toxin content ($average{\pm}SD\;{\mu}g$ STXeq/100 g) of M. coruscus, M. edulis, M. galloprovincialis and Septifer vulgatus were $1,660{\pm}79,\;3,914{\pm}2,242,\;5,626{\pm}1,620\;and\;958{\pm}163$, respectively. Toxin profiles included C1,2, GTX1,4 and neoSTX as the major components, and dcGTX2,3, GTX2,3, neoSTX and STX as the minor ones. Toxin accumulation of three mussel species collected from Pohang, Geoje and Anmyon-do showed interspecies and interlocality differences. Toxin content ($average{\pm}SD\;{\mu}g$ STXeq/100 g) were $91{\pm}4,\;151{\pm}14,\;39{\pm}3$ in M coruscus, $189{\pm}1,\;231{\pm}11,\;206{\pm}15$ in M edu/is and $214{\pm}28,\;326{\pm}30,\;291{\pm}26$ in M. galloprovincialis in order of Anmyon-do, Geoje and Pohang.

Species classification of the toxic dinoflagellate Alexandrium tamarense and A. catenella based on their paralytic shellfish toxin profiles

  • Kim, Young-Soo;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.128-128
    • /
    • 2003
  • The annually outbreak of paralytic shellfish poisoning (PSP) were caused by toxic dinolagellate A. tamarense and A. catenella in Korea. The purpose of this study were to investigate the distribution of PSP-causative organisms, A. tamarense and A. catenella and their species classification. Sediment (Saemangeum, the south open sea) and water samples (southeastern coast) were sampled to establish clonal isolates in 2003. After isolation and purification, strains were cultured under $17^{\circ}C$, f/2 media, 14:10=L:D cycle. PST analysis and species identification were performed by HPLC-FD method and specific DNA probe, respectively. Thirty-ons strains were isolated from the Saemangeum reclamation, southeastern coast including Jinhae Bay and south open sea. PSTs were detected in all cultured strains. In eight strains from south offshore, major toxin components are GTX5, C1/2 and minors are GTX3/4, dcGTX3, neoSTX. Sixteen strains from south coastal area have GTX1/4, neoSTX, C1/2 as major toxin components and GTX2/3 as minors. Seven strains from the Saemangeum reclamation have GTX5, C1/2 as major toxin components and GTX1/2/3/4 as minors. Thus, among eight south offshore isolates, four A. tamarense have more toxic (38.31~l19.16 fmol.$cell^{-1}$) than A. catenella (3.78~13.13 fmol.$cell^{-1}$). With the previous results of different toxin composition, toxin components and toxin contents, .it is toxin profile that could used to diagnosis of regional toxic population and geographical distribution of both A. tamarense and A. catenella and their toxigenic strains.

  • PDF

Paralytic Shellfish Poison Profile in Commercial Shellfishes (시판 중인 패류의 마비성 패류독 특성)

  • Jang, Jun-Ho;Yun, So-Mi;Lee, Jong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.924-928
    • /
    • 2005
  • Toxin profiles of the paralytic shellfish poison (PSP) detected from domestic shellfishes collected at the market and imported. shellfishes were invested by fluorometric HPLC. Total 9 components in PSP were analysed from the imported ark shell, such as saxitoxin (STX), decarbamoylsaxitoxin (dcSTX), gonyautoxin (GTX) - 1,2,3,4,5, Cl and C2. Among those toxins, 7 components except for GTX1,4 were detected from domestic shellfishes and showed different toxin contents and toxin compositions by species. Only C group toxin (Cl +2) contained in short necked clam and hard clam $(0.06\~0.56\;nmole/g)$ which living under soil but, in the blue mussels and oysters which cultured in the open sea water, showed more higher toxicity and complicate toxin compositions. Toxin compositions in bloody clam and purplish washington clam were very different in some samples even in same species. GTX4 and GTX5 were higher in imported scallop and STX was higher in imported ark shell than other species.

Paralytic Shellfish Toxin Composition and Intoxication of Scallops (Patinopecten yessoensis) in Kangnung Coastal Waters of East Sea in 1997 (강릉 연안산 참가리비의 PSP 독화 및 독조성)

  • JEON Joong-Kyun;HAN Myung-Soo;PARK Young Je;YOON Moon-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.813-816
    • /
    • 1998
  • Toxicity and toxin compositions of wild and cultured scallops (Patinopecten yessoensis), collected from coastal waters near Kangnung of East Sea, were examined from January to June, 1997. By mouse bioassay methods, the toxicity was detected with low toxicity of $2 MU\;g^{-1}$, and paralytic shellfish poisoning (PSP) toxin was detected in the specimens from 30 April to 15 May by HPLC. GTXs and PXs were identified as the major toxin components.

  • PDF

Paralytic Shellfish Poisoning of Mediterranean mussels from Jinhae Bay in Korea (진해만 해역에서 지중해담치 (Mytilus galloprovincialis)의 마비성패독 독화 양상)

  • Shon, Myung-Baek;Kim, Young-Soo;Kim, Chang-Roon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • This study looked at toxicity of Mediterranean mussels, Mytilus galloprovincialis, which had accumulated paralytic shellfish toxins (PST) from early March to late May 2005 at Jinhae Bay, Korea. Alexandrium sp. was observed in low densities (< 1,000 cells/L) at the beginning of the study in March, increased rapidly in April, declined rapidly and disappeared in May. Although low densities of Alexandrium sp. were observed in March, mussel toxicity exceeded regulation level ($80{\mu}g$ STXeq. /100 g). Peak PSP (Paralytic Shellfish Poisoning) toxicity in the mussels occurred during high Alexandrium sp. cell densities in April. Mussels toxicity decreased with decline of Alexandrium sp. cell density. Major toxin components identified were $GTX_1$, $GTX_4$, followed by $C_1$, $C_2$, $GTX_2$, $GTX_3$ and neoSTX. Trace or sporadic toxin components were STX, $GTX_5$, $dcGTX_2$, $dcGTX_3$ and dcSTX. Toxin component analysis from the middle to end of the study showed that $11{\beta}$-epimers ($GTX_{3,4}$, $C_2$) were converted into $11{\alpha}$-epimers ($GTX_{1,2}$, $C_1$) and started to determine STX.

Effects of Temperature and Salinity on the Growth and Paralytic Shellfish Toxin (PST) Production by Toxic Dinoflagellate Alexandrium pacificum (유독 와편모조류 Alexandrium pacificum의 생장과 마비성 패독 생산에 미치는 수온과 염분의 영향)

  • Li, PeiJin;Oh, Seok Jin;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.866-873
    • /
    • 2022
  • Growth rate and production of the paralytic shellfish poisoning toxin (PST) of a toxic dinoflagellate Alexandrium pacificum (LIMS-PS-2611) isolated from the southern sea of Korea, were examined under various temperatures and salinity conditions. The maximum growth rate (0.28 day-1) was observed under 25℃ and 30 psu. Optimal growth (≥ 70% of maximum growth rate) was obtained between 20~25℃ and 25~35 psu. Among the PSTs of A. pacificum, the principal toxins were C1+2 and GTX5 in N-sulfocarbamoyl toxin group, and minor components were characterized as neoSTXs in the carbamate toxin group. Maximum toxin content was observed under 20℃ and 30 psu, and the toxin content increased with the increase of salinity. Low toxin contents were measured under the temperature and salinity conditions of the maximum growth rate. Therefore, the PSP of bivalve, which occurs at a temperature range of 20-25℃ in June, might have been derived from A. pacificum.

Reestablishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 3. Thermal Resistance of Paralytic Shellfish Poison (마비성 패류독 허용기준치 재설정을 위한 연구 3. 마비성 패류독의 내열성)

  • 신일식;김영만
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.143-148
    • /
    • 1998
  • The purpose of this study was to determine the kinetics of paralytic shellfish poison (PSP) destruction at various temperature. The toxic digestive gland homogenate of blue mussel (Mytilus edulis), PSP crude toxin, gonyautoxin group and saxitoxin group were heated at temperature ranging from 90 to $120^{\circ}C$, and then the toxicities were measured in samples heated for various time intervals. The rate constant (k) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were $3.28{\times}10^{-2},\;1.20{\times}10^{-2},\;5.88{\times}10^{-2}\;and\;2.58{\times}10^{-2}\;at\;120^{\circ}C$, respectively. The decimal reduction time (D-value) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were 70, 192, 39 and 89 at $120^{\circ}C$, respectively. These results indicate that PSP crude toxin is most heat-stable of 4 types of PSP toxins and PSP toxin are more heat-stable than food poisoning bacteria and spores. The retorting condition to reduce PSP toxicity below quarantine limit ($80\;\mu\textrm{g}/100\;g$ in Korea and America, 4 MU/g in Japan) could be calculated by rate constant. For example, the digestive gland homogenate having a initial toxicity of $200\;\mu\textrm{g}/100\;g$ could have toxicity below quarantine limit when heated at $90^{\circ}C$ for 129 min., $100^{\circ}C$ for 82 min., $110^{\circ}C$ for 48 min. and $120^{\circ}C$ for 28 min. These results suggest that commercial retorting condition ($115^{\circ}C$ for 70 min) in Korea is enough to reduce toxicity below quarantine limit from initial toxicity of $200\;\mu\textrm{g}/100\;g$. From these results, the quarantine limit of PSP-infested shellfish for canning can be level up to raw score of $200\;\mu\textrm{g}/100\;g$.

  • PDF

Comparison of MBA and HPLC Post-column Oxidation Methods for the Quantification of Paralytic Shellfish Poisoning Toxins

  • Yu, Hongsik;Lim, Keun Sik;Song, Ki Cheol;Lee, Ka Jeong;Lee, Mi Ae;Kim, Ji Hoe
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.159-164
    • /
    • 2013
  • The mouse bioassay and high performance liquid chromatography (HPLC) post-column oxidation method are different methods of quantifying paralytic shellfish poisoning toxins. In this study, we compared their ability to accurately quantify the toxicity levels in two types of field sample (oysters and mussels) with different toxin profiles for routine regulatory monitoring. A total of 72 samples were analyzed by both methods, 44 of which gave negative results, with readings under the limit of detection of the mouse bioassay ($40{\mu}g/100g$ saxitoxin [STX] eq). In 14 oysters, the major toxin components were gonyautoxin (GTX) 1, -2, -3, -4, -5, decarbamoylgonyautoxin-2 (dcGTX2), and decarbamoylsaxitoxin (dcSTX), while 14 mussels tested positive for dcSTX, GTX2, -3, -4, -5, dcGTX2, neosaxitoxin (NEO), STX, and dcSTX. When the results obtained by both methods were compared in two matrices, a better correlation ($r^2=0.9478$) was obtained for mussels than for oysters ($r^2=0.8244$). Additional studies are therefore needed in oysters to investigate the differences in the results obtained by both methods. Importantly, some samples with toxin levels around the legal limit gave inconsistent results using HPLC-based techniques, which could have a strong economic impact due to enforced harvest area closure. It should therefore be determined if all paralytic shellfish poisoning toxins can be quantified accurately by HPLC, and if the uncertainties of the method lead to doubts regarding regulatory limits.

Anatomical Distribution of Paralytic Shellfish Toxin in Bay Scallops Argopecten irradians Along the Gyeongnam Coast, Korea (경남 연안 해만 가리비(Argopecten irradians)의 부위별 마비성 패류독소 분포)

  • Kim, Dong Wook;Park, Kunbawui;Ha, Kwang Soo;Ryu, Ara;Yu, Hean Jae;Jo, Seong Hae;Jo, Sung Rae;Mok, Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.241-246
    • /
    • 2019
  • To understand the characteristics of paralytic shellfish poisoning in a major production area of the bay scallop Argopecten irradians in Korea, the seasonal variation and anatomical distribution of paralytic shellfish toxin (PST) were determined in bay scallops collected from the Gyeongnam coast of Korea from March to May 2018. PST levels in bay scallops in the survey area showed remarkable seasonal variation. PST was first detected at a level of 0.42 mg/kg on April 2, 2018, and the highest toxin level (3.15 mg/kg) was recorded on April 12. Among the tissues of bay scallops, the highest proportion of PST was found in the viscera ($54.9%{\pm}17.8%$), followed by the adductor ($22.8%{\pm}10.9%$), gonads ($8.9%{\pm}4.6%$), gills ($7.1%{\pm}3.7%$), and mantle ($6.3%{\pm}.8%$). In addition, with higher PST levels in the whole tissues of bay scallops, the proportion of PST in the viscera increased, whereas those in the mantle, gill, and gonad tissues decreased. In a high-toxicity group with more than 2.0 mg/kg PST in the whole tissues, the proportion of PST in the viscera was $71.8%{\pm}6.7%$.

Saxitoxin and Its Analogues: Toxicity, Analytical Method, Occurrence and Safety Management (삭시톡신과 그 유사체: 독성, 분석법, 국내외 오염도 및 관리 동향)

  • Lee, Sang Yoo;Im, Ju Hee;Woo, So Young;Choi, Hwa Young;Park, Su Been;Yoo, Cha Nee;Chun, Hyang Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.521-534
    • /
    • 2020
  • Paralytic shellfish poisoning (PSP) occurs when saxitoxin (STX), which is produced by harmful algae (dinoflagellates) and then accumulated in bivalve shellfish by filter-feeding, is consumed by humans. With recent advances in analysis technology, it has been reported that dinoflagellates also produce a variety of analogues such as the gonyautoxin (GTX) group and the N-sulfo-carbamoyl toxin (C toxin) group, in addition to STX. Accordingly, CODEX and the EFSA are stepping forward to manage STX and analogues as STX groups requiring safety management. In Korea, the occurrence of dinoflagellates producing STX analogues has already been reported, and contamination of analogues (GTX group, C toxin group) in live mussels has also been reported. In this study, in order to provide the basis for systematic monitoring and safety management of STX and analogues, their physicochemical characteristics, occurrence of dinoflagellates, toxicity and toxic equivalency factor, analytical method and occurrence were widely reviewed. This review is expected to contribute to strengthening the safety management of STX and its analogues.