• Title/Summary/Keyword: shell analysis

Search Result 2,052, Processing Time 0.026 seconds

Development of Shell Element to Analyze an Intelligent Structure with Piezoelectric Sensor/Actuator (압전 감지기/작동기를 포함하는 셀 요소의 개발)

  • 황우석;고성현;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.225-231
    • /
    • 2003
  • A new three-dimensional thin shell element for a structure containing an integrated distributed piezoelectric sensor and actuator is Proposed. The assumed strain formulation and the bubble function are introduced to improve the performance of the shell element. A finite element formulation gives a general tool that can predict the static or dynamic responses of the shell with piezoelectric sensor/actuator. The verification through the calculation of the static response for the piezoelectric bimorph beam shows that the results agree with those from the theoretical analysis very well. Dynamic response of a shell shows that the reduction of vibration is possible with the introduction of the piezoelectric shell sensor and actuator. However. the curvature of sensor/actuator is an obstacle for application, since the flexible PVDF is not strong enough and the PZT with curvature should be made specially.

Noise and Vibration Analysis of a cylindrical shell by controlling ER mount (ER마운트 제어에 의한 원통셸의 진동소음 해석)

  • Jung, Woo-Jin;Jung, Weui-Bong;Seo, Young-Soo;Cho, Hyun-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.348.2-348
    • /
    • 2002
  • ER mount is often used instead of rubber mount in cylindrical shell to improve the vibration and noise performanec. The noise radiated by cylindrical shell will be reduced by reducing the force transmitted to the cylindrical shell through ER mount. In this paper, LQ control theory is used to reduce the transmitted force to the cylindrical shell. The finite element method of cylindrical shell is formulated by NASTRAN and its vibrating shape is calculated in frequency domain. (omitted)

  • PDF

Modal Analysis of Conical Shell Filled with Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1848-1862
    • /
    • 2006
  • As a basic study on the fluid-structure interaction of the shell structure, a theoretical formulation has been suggested on the free vibration of a thin-walled conical frustum shell filled with an ideal fluid, where the shell is assumed to be fixed at both ends. The motion of fluid coupled with the shell is determined by means of the velocity potential flow theory. In order to calculate the normalized natural frequencies that represent the fluid effect on a fluid-coupled system, finite element analyses for a fluid-filled conical frustum shell are carried out. Also, the effect of apex angle on the frequencies is investigated.

Design Suggestion of Catenary Shell using Grasshopper Script (Grasshopper를 이용한 Catenary Shell 설계 방법 제안)

  • Lee, Joo Ho;Cho, Ah Sir;Kim, Sanghee;Kang, Thomas H.-K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • The objective of this study is to propose methods to design and analyze a catenary shell using a computer program without experiments and measurements. The intial idea stems from Pendergrast's study, but his method should be improved. In this study, the process of making catenary shell using computer was reproduced by Grasshopper script. In order to enhance credibility, two models from Grasshopper script were analyzed by SAP2000; one was just a square-based catenary shell, while the other was the re-created shell originated from the Naturtheater $Gr{\ddot{o}}tzingen$. The outcome of analysis was reasonable.

A new piezoelectric shell element and its application in static shape control

  • Chen, Su Huan;Yao, Guo Feng;Lian, Hua Dong
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.491-506
    • /
    • 2001
  • In this paper, a new three-dimensional piezoelectric thin shell element containing an integrated distributed piezoelectric sensor and actuator is proposed. The distributed piezoelectric sensor layer monitors the structural shape deformation due to the direct effect and the distributed actuator layer suppresses the deflection via the converse piezoelectric effect. A finite element formulation is presented for static response of laminated shell with piezoelectric sensors/actuators. An eight-node and forty-DOF shell element is built. The performance of the shell elements is improved by reduced integration technique. The static shape control of structure is derived. The shell element is verified by calculating piezoelectric polymeric PVDF bimorph beam. The results agreed with those obtained by theoretical analysis, Tzou and Tseng (1990) and Hwang and Park (1993) fairly well. At last, the static shape control of a paraboloidal antenna is presented.

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

A Study on the Development of Forming Process for a Compressor Shell Body (압축기용 쉘바디의 성형공정 개발에 관한 연구)

  • Kim, Min-Jeong;Oh, Won-Jung;Shin, Dong-Cho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.635-640
    • /
    • 2016
  • The shell body is the main exterior part of a compressor, and production of shell bodies has increased along with a growing demand for air conditioners, refrigerators, air compressors, and so on. Cracks frequently occur in the process of welding a shell body. In this study, a deep drawing process for creating a shell body from a blank is developed. The technique consists of a four-step deep drawing and a two-step trimming process. Analysis is performed by DEFORM software to examine the safety of the deep drawing and trimming processes. The deep drawing process for the shell body developed in this study would have wide application in many industrial fields.

One-pot synthesis of PdAu bimetallic composite nanoparticles and their catalytic activities for hydrogen peroxide generation

  • Xiao, Xiangyun;Kang, Tae-Uook;Nam, Hyobin;Bhang, Suk Ho;Lee, Seung Yong;Ahn, Jae-Pyung;Yu, Taekyung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2379-2383
    • /
    • 2018
  • We report a facile one-pot aqueous-phase synthesis of PdAu bimetallic nanoparticles with different Pd/Au ratio. The synthesis was conducted by co-reduction of Pd and Au precursor using ascorbic acid as a reducing agent and in the presence of polyallylamine hydrochloride (PAH). By high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectrometry (EDS) analyses, we found that the synthesized nanoparticles had an onion-like core/shell/shell/shell structure with Au-rich core, Pd-rich shell, Au-rich shell, and Pd shell, respectively. We also investigated the catalytic performance of the synthesized PdAu nanoparticles toward hydrogen peroxide generation reaction.

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Integration of Shell Analysis and Surface Modeling (쉘 해석과 곡면 모델링의 연동)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Roh, Hee-Yuel
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.181-190
    • /
    • 2007
  • The linkage framework of surface geometric modeling based on the NURBS and shell finite element analysis is developed in this study. In the geometrically exact shell finite element analysis, the accuracy of the analysis strongly depends upon the accurate computation of the surface geometric quantities. Therefore if we obtain the necessary geometric quantities from the NVRBS surface equation, it's possible to construct the effective linkage framework of surface modeling in the CAD systems and shell finite element analysis using geometrically exact shell finite element. Besides, the linkage framework can be applied to the analysis of general and complex surfaces as well as simple surfaces. In this study, the shell surfaces are generated by interpolating given set of data points based on the NURBS surfaces. These data points usually can be obtained from surface scanning. But the representations of the generated NURBS surface are not same to one another. The accuracy depends on the chosen parameterization methods used in NURBS. Therefore, it is needed to select the suitable parameterization method according to the geometry of the surfaces. To verify the performance and accuracy of our developed linkage framework, we solve several well-known benchmark problems and assess the performance of the developed method.