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Modal Analysis of Conical Shell Filled with Fluid
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As a basic study on the fluid-structure interaction of the shell structure, a theoretical for-
mulation has been suggested on the free vibration of a thin-walled conical frustum shell filled
with an ideal fluid, where the shell is assumed to be fixed at both ends. The motion of fluid
coupled with the shell is determined by means of the velocity potential flow theory. In order to
calculate the normalized natural frequencies that represent the fluid effect on a fluid-coupled

system, finite element analyses for a fluid-filled conical frustum shell are carried out. Also, the

effect of apex angle on the frequencies is investigated.
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1. Introduction

A thin conical frustum shell filled with fluid is
widely used in the engineering design. One exam-
ple is a support shell bounded by top and bottom
rigid plates in an integral reactor that is under
development in Korea. The support shell is a
perforated conical frustum shell in contact with
coolant during the power plant operation. To
verify the structural integrity during normal op-
eration, it is necessary to investigate extensively
flow induced vibration, prerequisite to which is
the investigation of the modal characteristics.

The basic studies on the modal analysis of a
conical frustum shell in vacuum have been per-
formed by Goldburg et al.(1960). However, few
theoretical studies on free vibration of a conical
frustum shell filled with fluid were taken into
consideration. Instead of the conical shell, many
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researchers have studied similar problems, both
theoretically and experimentally. Yamaki et al.
(1984) and Gupta et al.(1988) developed an an-
alytical method for free vibration of a clamped
cylindrical shell filled with an ideal fluid using
the Galerkin procedure. An experimental study
was carried out and verified with FEM by Mazuch
et al.(1996). Han and Liu (1994) considered tanks
with axial non-uniformity in the thickness when
studying the same problem. Jeong and Kim (1998)
also developed a theoretical method for the free
vibration of a circular cylindrical shell filled with
a compressible bounded fluid using Fourier series
expansion method. Jeong et al.(1997) investigat-
ed the effects of compressibility of fluid and fluid
density on the coupled natural frequencies of a
cylindrical tank filled with compressible fluid.
This study attempts to suggest an analytical ap-
proach that can calculate the natural frequencies
of a conical frustum shell filled with a bounded
ideal fluid. The fixed boundary condition is as-
sumed for both ends of the shell. An example to
predict the natural frequencies of a conical shell
filled with an inviscous and incompressible fluid
is predicted using finite element analysis in order
to investigate fluid effect on free vibration of the
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fluid-filled conical shell. Also investigated in this
study is the effect of apex angle on the frequencies
of the conical shell.

2. Theory

2.1 Equation of motion

Consider a conical frustum shell containing in-
compressible fluid covered by rigid end plates, as
illustrated in Fig. 1. The shell has an upper ra-
dius R, lower radius R, height H, and wall
thickness /4. The Donnell-Mushtari’s shell equa-
tions (Leissa, 1973) coupled with a fluid effect
can be written as :
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where, §=s/R,, a=apex angle of the shell, p=
mass density of the shell, z=Poisson’s ratio of
the shell, p=hydro-dynamic pressure on the shell,
FE=modulus of elasticity and %, v and w are
modal functions of the shell corresponding to
the s, @ and 7 directions, respectively. The bi-
harmonic operator can be defined as the particu-
lar coordinates.
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When the shell is simply supported at the both

1849

1€

Fig. 1 A conical shell filled with fluid

ends, the boundary conditions are at s=0 and

s=L:

M;(0) =N;(0) =(0) =w(0)

— ML) =No(L)=0(L)=w(L)=0 ¥

where Ns and Ms denote the membrane tensile
force and bending moment per unit length, re-
spectively. On the other hand, when the shell is
fixed at the both ends, the geometric boundary
conditions of the shell are at s=0 and s=L:

u(0) =v(0) =w (0) =w,s(0)

—u(L) =0 (L) =w(L) = (30)

w,s(L)=0

2.2 Modal functions

When the conical frustum shell is simply sup-
ported or fixed at both ends, the dynamic dis-
placements in any mode of free vibration can be
assumed in the following form for any circum-
ferential mode number 7 :

uls,6,t)= é [Arn exp{Aum (§—51) }] cos n8 exp (iwt) (4a)

m=1

0(5,0,8)= 2 [ Busexplm (550 Jsin nfexpliof) (4b)

w(s,8,t) =§=}1[Cm exp{ A (§—351) }] cos né exp (iwt) (4c)
where §1=s1/Ro. Anm, Bum and Cum in Eq. (4)
denote the unspecified coefficients that define
the mode shapes of the shell and depend on the
chosen boundary conditions. A in Eq. (4) is the
frequency parameter.
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23 Equation of fluid motion

The contained fluid does not maintain a free
surface since it is bounded by the rigid end plates
at both ends of the shell. The non-viscous, irro-
tational and incompressible fluid motion due to
the shell vibration is described by the general ve-
locity potential @ which must satisfy the La-
place equation :

Oant 5 Ont g Ot O=0  (5)
It is possible to separate the function @ with re-
spect to x by observing that the rigid plates at-
tached to both ends of the shell prevent the fluid
from moving to the x direction. The solution can
be obtained with respect to the cylindrical coor-
dinates, R, # and x.

O(R,0,x,t) =¢(R,0,x)expiwt)
8 ~
=’”2=1 Dynly (AumR) cos (Aun) cos n8 €xXp (iwt)

where R=R/R,, £=x/R., and w is the cou-
pled natural frequency of the shell. I, is modified
Bessel function of the first kind of order #n. ¢
means the spatial velocity potential of the con-
tained fluid. Because of impermeable rigid surface
on the bottom and the top, the axial fluid velocity
there is also zero, so at x=0 and x=H

04(R, 0,x)/ox=0 (7

In addition, when the thickness of the shell is
negligible compared to the shell diameter, the
boundary condition assures the contact between
the inner surface of the shell and the fluid. The
requirement is given as at R=FR,:

(R, 0,x)/0r=0¢(R,0,x)cos a/oR

=—w(s, 0) ®

From Eq. (8), the unspecified coefficient Dym in
Eq. (6), associated with the fluid motion, can be
described in terms of the modal coefficient Cum
associated with the radial displacement of the
shell ;

AumDrmln (Anm) COS & CoS (Anmj)
= Cnm CoSs {Anm (§_§1) }

9)

Further, the hydrodynamic pressure exerted by
the fluid on the wetted shell surface can be given
as;

p(x; 0, t) =pow2¢(Ro, 9,f)exp(la)t) (10)

where p, is the fluid density. Now, the normal-
ized forces due to the hydrodynamic pressure on
the wetted shell surface, namely p(1— (%) R2/Eh,
in Eq. (1¢), can be reduced in terms of coefficient
Cum associated with the radial displacement of the
conical shell :

- R
Eh

(11)
2(1_ 2
2_%2 Conlen €08 {Aum (§—51)} cos n8 expliwt)

where

Apm=—1I» (llnm) / (linmlr: (/Ltm) C0s d) (12)

24 General formulation

Substitution of the displacements described by
Eq. (4) and Eq. (11) into Eq. (1), leads to an ex-
plicit relation for the coefficients Apm, Bnm and
Crm which are coupled together as follows :

€11 €12 €13 Arm Ann
€12 €32 €23 Bun =[S] B 2{0} (13)
€13 €23 €33 Com Con

The elements of the matrix, e;; (7,7=1,2,3) can
be obtained from formulation of Eq. (13). For a
non-trivial solution of Eq. (13), the determinant
of the matrix, det[S] must vanish.

[S|=0 (14)

This requirement gives a characteristic equation
which leads to an algebraic equation of the eighth
order for the unknown eigenvalues, A.n. Eq. (13)
also allows us to calculate the ratios of the co-
efficients Anm/ Cnm and Bum/ Cam. The global so-
lution will thus be given with the help of eight
integration coefficients and unknown frequency
parameter. The final phase of the calculation pro-
cedure lies in satisfying the corresponding bound-
ary condtions described by Eqgs. (3a) and (3b).
Since four boundary conditions are to be satisfied
at each shell edge, we obtain a total of eight con-



Modal Analysis of Conical Shell Filled with Fluid 1851

ditions to be satisfied by solving Eq. (4). This
produces 8 linear homogeneous equations for
eight integration coefficients, for each value of #.
The condition requiring that these integration co-
efficients be zero leads to the frequency deter-
minant.

3. Analysis

3.1 Theoretical analysis

On the basis of the preceding analysis, the fre-
quency determinant is numerically solved for the
clamped boundary condition in order to find the
natural frequencies of a conical shell filled with
fluid. The shell has a mean radius of 150 mm at
mid-height, a length of 300 mm, and a wall thick-
ness of 2 mm. The physical properties of the shell
material are as follows: Young’s modulus=69.0

17
1
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1
1
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GPa, Poisson’s ratio=0.3, and mass density=
2700 kg/m®. Water is used as the contained fluid
with a density of 1000 kg/m?® The sound speed in
water, 1483 m/s, is equivalent to the bulk modulus
of elasticity, 2.2 GPa.

The frequency equation derived in the preced-
ing section involves the double infinite series of
algebraic terms. Before exploring the analytical
method for obtaining the natural frequencies, it is
necessary to conduct convergence studies and es-
tablish the number of terms required in the series
expansions involved. In the numerical calcula-
tion, the Fourier expansion term is set at 100,
which gives an exact enough solution by conver-
gence

3.2 Finite element analysis
Finite element analyses using a commercial com-
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Fig. 2 Finite element model of conical shell filled with fluid
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puter code ANSYS 5.6 (ANSYS, 1999) are per-
formed to verify the analytical results for the theo-
retical study. The finite element method results
are used as the baseline data. Three-dimensional
model is constructed for the finite element an-
alysis. The fluid region is divided into a number
of identical 3-dimensional contained fluid ele-
ments (FLUIDS80) with eight nodes having three
degrees of freedom at each node. The fluid ele-
ment FLUIDSO is particularly well suited for cal-
culating hydrostatic pressures and fluid/solid in-
teractions. The circular cylindrical shell is model-
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ed as elastic shell elements (SHELL63) with four
nodes. The model has 8640 fluid elements and 960
shell elements as shown-in Fig. 2.

The fluid boundary conditions at the top and
bottom of the tank are zero displacement and ro-
tation. The nodes comnnected entirely by the fluid
elements are free to move arbitrarily in three-
dimensional space, with the exception of those,
which are restricted to motion in the bottom and
top surfaces of the fluid cavity. The radial veloci-
ties of the fluid nodes along the wetted shell sur-
faces coincide with the corresponding velocities
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Fig. 3 Typical mode shapes of conical shell with fluid for ¢=20°
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Fig. 4 Mode shapes of conical shell with fluid for g=20°
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of the shells. Clamped-clamped boundary condi-
tions at both ends are considered for the shell.

The Block Lanczos method is used for the ei-
genvalue and eigenvector extractions of the finite
element model, which is available for large sym-
metric eigenvalue problem. Typically this solver
is applicable to the type of problems solved using
the subspace eigenvalue method, however, at a
faster convergence rate, and is very useful to find
all exact symmetric modes necessary to define the
dynamic characteristics of the shell. In this case
several sloshing modes of a fluid appear at the
same time and therefore they should be excluded
for the shell modes only.



1854 Myung Jo Jhung, Jong Chull Jo and Kyeong Hoon Jeong

3000

3000

C-C. w/lhuid
a=10°

C-C, w/Fluid

s f =3

zux»‘*\“\v\%__q_,///

2500 |
-

N A
=3 . 6=} g >
g 100 | e 2 w00t
< \W [~o—m'=2 &
/-A-,,,-:g .— = y
soo |- o nid soo | T — ]
’\f’\,,.__a——-—o’//‘- o € o 13 = 0 &\“’—c—""/‘ b- 0 =S
|—<—ni=6 o e 16
o lu L : L : : L ) L L T T gl : " L 2 L L . . L
1 2 3 4 s 6 7 8 4 | N U R 2 1 2 3 4 5 6 7 8 9 10 1112
Circumferential Mode Number (1) Circumferential Mode Number (#)
30600 3060
C-C, w/Fuid C-C, willuid I
o= 20° a=d0” bec =2
00 - b= tom =3
pmr e i'=d
powe e g1/ =28
<t pi'=6

p- 0 =1

1000 \0\0\ e 0o =2
) /'—"—m’:}

Frequency (Hz)
Frequency (Hz)

o o e nf=d
500 k\"\»&.—fo’/& ]
|-~ ni=6
0 L 1 i L I I ). 1 i 1. 1. I 0 i L L i i L 1 L i i3 i I
1 2 3 4 s 6 7 8 9 16 12 i 2 3 4 5 6 7 8 9 0 1 12

Circumferential Mode Number (77) Circumferential Mode Number (1)
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4. Results and Discussion

Mode shapes of a conical shell are obtained by
the finite element method and typical modes are
plotted in Fig. 3, which shows the deformed mode
shape of the shell elements for the modes of (1,3),
(3,2), (2,4) and (4,5). Circumferential mode shapes
for @=20° are shown in Fig. 4.

The frequency comparisons between analytical
solution developed here and finite element meth-
od are shown in Fig. 6. The discrepancy is de-
fined as

Discrerpancy (%)

_ frequency by FEM-theoretical frequency , |+ (15)
frequency by FEM

The largest discrepancy between the theoretical
and finite element analysis results is 7.2% for the
mode of (1,2). Discrepancies defined by Eq. (15)
are always less than 5% except for axial modes of
m’ =1, therefore the theoretical results agree well
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with finite element analysis results, verifying the
validity of the analytical method developed. The
compressibility of the fluid was found to reduce
the natural frequency of the lower wet modes in
the case of a fluid-filled cylindrical shell (Jeong
and Kim, 1998) . Therefore, discrepancies may be
caused by the assumption that the water is incom-
pressible in the theory.

The frequency variations of a conical shell with
respect to the apex angle are shown in Fig. 6. Fre-
quency comparisons for the various apex angles
are shown in Fig. 7, which show that as the apex
angle increases the frequencies tend to decrease.
The rate of decreasing frequency has the same
sinusoidal shape with respect to circumferential
mode as shown in Fig. 8 except for »’=1. The
effect are most severe for circumferential mode
n=3 except for m’=1, where #=1 modes are
most significantly affected.

The frequency variations of a conical shell
without fluid with respect to the apex angle are
shown in Fig. 9 and frequency comparisons for
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Fig. 9 Natural frequencies of a conical shell without fluid
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the various apex angles are shown in Fig. 10. In
this case the effect of apex angle is a little different
that of with-fluid case. For w’=1,2 and 3 the
lowest circumferential mode #=1 are most in-
fluenced by the apex angle but #=3 modes for
m' =4 and S5 are most affected as shown in Fig. 11
as in the case of with—fluid.

The effect of fluid filled on the frequencies can
be assessed using the normalized frequency de-
fined as the natural frequency of a structure with
fluid divided by the corresponding natural fre-
quency of the structure in air. The normalized
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natural frequencies have values between one and

zero due to the added mass effect of fluid. Fig.

12 shows the normalized natural frequencies for

various apex angles. As the apex angle increases,
the reduction of frequencies due to the inclusion
of fluid is more severe except for several modes
such as (2,1), (3,1), (4,1), (3,2) and (4,2), where
decreasing rate of frequencies increase. Also it
is found that the normalized frequencies of with
versus without fluid increase according to the in-
crease of mode numbers, which means that lower
circumferential and lower axial modes are more
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affected by the fluid. But (2,1) mode larger than
apex angle of 30° doesn’t follow the general trend
because it shows the combination of local modes
as shown in Fig. 14, where the lower part of the
shell moves more than the upper part. Generally,
this kind of deviation from the general trend comes
from the non-symmetric structure in the axial
direction.

Myung Jo Jhung, Jong Chull Jo and Kyeong Hoon Jeong

The vector plots of m’=1 representing the mode
shape for the conical shell with apex angle of 40°
are shown in Fig. 14. They show the maximum
dynamic displacements of the water. Generally
speaking, the liquid displacement near the shell is
dominant and it gradually reduces as the liquid is
far away from the shell. As the mode increases,
the dynamic displacement of the water reduces
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resulting in the reduction of the fluid effect on
the frequencies with the increasing number of
modes, which is also shown in the normalized
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frequencies of the shell with fluid with respect to
the shell without fluid as in Fig. 12.
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Kwak and Kim (1991) introduced the non-
dimensionalized added virtual mass incremental
(NAVMI) factor to characterize the effect of fluid
on the natural frequencies of circular plates in
contact with fluid. The NAVMI factor I for the
conical shell with fluid can be defined as

et (o T

Wwater

where Wair and Wuwaser are the frequencies of the
shell without and with water, respectively. For the
apex angle of 0°, the NAVMI factor can be shown
in Fig. 15 and it is clear that as the mode number
increases the fluid effect decreases, which is con-
current with the result from the normalized fre-
quencies of the shell with fluid with respect to
without fluid. In addition, Eq. (16) indicates that
the NAVMI factor is proportional to the apex
angle by the ratio of v'14 (tan @)?, which relates
the effect of the fluid on the frequencies to the
apex angle of the conical shell as shown in Fig.
16. As the apex angle increases, the fluid effect
increases, and therefore the frequencies decrease
with the increasing apex angle as shown in Fig. 7.

5. Conclusions

An analytical method to estimate the coupled
frequencies of the conical shells filled with fluid is
developed using the velocity potential flow theo-
ry. To verify the validity of the analytical method
developed, finite element method is used and the
frequency comparisons between them are found to
be in good agreement. The effect of fluid and the
apex angle on the frequencies is investigated using
a finite element method generating following con-
clusions ;

(1) As the apex angle increases the frequency
decreases and for most axial modes the circum-
ferential mode #=3 is most significantly affected
by the apex angle.

(2) The inclusion of fluid affects the lower
modes than the higher modes.

(3) The frequencies of the conical shells with
fluid decrease to 0.15~0.55 of those of shells in
air depending on the apex angle.

(4) The reduction rate of the frequencies due to
the inclusions of the fluid increase with increasing
apex angle except for several modes.
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