• Title/Summary/Keyword: sheets

Search Result 3,299, Processing Time 0.029 seconds

A Study on the Shear Capacity of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트(CFS)로 보강된 철근콘크리트 보의 전단내력에 관한 연구)

  • Gwon, Chul-Sung;Kim, Ha-Yong;Gwon, Woo-Hyun;Baek, Seung-Min;Kwak, Yoon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.259-262
    • /
    • 2005
  • This paper deals with the shear strengthening effect of RC beams strengthened with carbon fiber sheets. Fifteen strengthened RC beams(including control beam) were experimentally evaluated to determine improvements in shear strength. The major parmeters of experiment variables are fiber sheet strengthening ratios and strengthening methods of fiber sheet(I-S, I-W, U-S, U-W type). Reinforced concrete beams strengthened with carbon fiber sheets were tested under the combined control of load. Considering strengthening ratios and strengthening methods of fiber sheet, shear capacity and failure mode of test specimens were evaluated. The results show that shear capacity of beams strengthened with fiber sheet is about $28.82\%$ in IS type, $20.49\%$ in IW type, $26.04\%$ in US type, $28.70\%$ in UW type higher than the strength of control beam.

  • PDF

Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties (점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석)

  • 노인식;신병천
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

A numerical analysis and experimental study on the prediction of spray characteristics (분무특성 예측을 위한 이론적 접근과 실험적 연구)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • A theoretical and experimental study was carried out to predict the drop size distribution of the pressure swirl atomizer. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed that the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. Drop size distribution was obtained by using maximum entropy formalism. Seven constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of estimating source terms. In this study $D_{10}$ only was introduced into the formulation as a constraint. The predicted drop size and drop size distribution agreed well with the measured data.

  • PDF

An Experimental Study on the Strain-Dependence of Lankford's value of Steel Sheets (박강판 의 변형도 에 따른 Lankford값 의 변화 에 대한 실험적 연구)

  • 서대교;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.481-487
    • /
    • 1984
  • The dependence of Lankford's value of rimmed steel sheets on plastic strain in investigated in this paper. It is shown that Gotoh's theory predicts the Lankford's value satisfactorily, if suitable material constants are adopted. In addition the strain dependence of Lankford's value in the balanced biaxially-prestrained steel sheets is studied experimentally.

Recycling Technology of Aluminum UBC To Can Body Sheets

  • Lim, Cha-Yong;Kang, Seuk-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.173-178
    • /
    • 2001
  • The materials processing factors such as remelting and casting, heat treatment and microstructure, sheet rolling and can body forming in the aluminum can-to-can recycling procedure have been investigated. Aluminum used beverage can(UBC) was remelted together with virgin aluminum. The ceramic filter was used during casting to remove large impurities. As-cast microstructure was composed of large intermetallic compound (mainly $\beta$ -phase) distributed in the aluminum matrix. By heat treatment, $\beta$ -phase was transformed to $\alpha$ -phase which was also formed from $Mg_2$Si particles. The heat treated ingots were hot-rolled at 48$0^{\circ}C$ and cold-rolled to thin sheets. Can making from this thin sheets was successful and earing was measured after can making. There was a critical cold reduction rate for minimum earing. Some cracks were initiated from the impurity particles which was not removed during filtering.

  • PDF

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

Effect of a Radio-frequency/Vacuum plus Press Drying Process of Some Hardwood Veneers for Decoration on Checking and End Waving (압체고주파진공건조에 의한 주요 활엽수 무늬목 단판의 이할과 끝말림 예방효과)

  • 이남호;최준호;정희석
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • During a radio-frequency/vacuum plus press drying process of some hardwood veneers for decoration we investigated the effect of a grain and thickness of a veneer sheet on drying rates, variations of final moisture content within a bundle of veneer sheets, and formation of checking, end waving, and burning mark. About thirty three hundreds sheet of veneer could be dried in sixty five hours from green to in0-use moisture content, and a final moisture content was significantly effected by initial moisture content of veneer. There were nearly variations in a final moisture content among the veneer sheets in the same bundle. A checking was never found in a edge-sliced veneer, and very slight in a flat-sliced veneer of ash and red oak. There were no end waving and no burning mark in all veneer sheets.

  • PDF

Static and Dynamic Analysis of Flexible Media Using Spring-Mass-Beam Model (스프링-매스-빔 모델을 이용한 유연매체의 정.동적 거동해석)

  • 지중근;정진우;홍성권;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.906-911
    • /
    • 2004
  • In the development of sheet-handling machinery, it is important to be able to predict the italic and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at such a high speed. In this paper, a spring-mass-beam model is introduced. This model consists of rotational springs, shear springs and masses. The formulations for static and dynamic behavior of sheets are introduced. And some simulations are presented for static and dynamic cases.

  • PDF

Sectional Analysis of Forming Processes for Tailored Blank Sheets Using Finite Element Method (유한요소법을 이용한 합체박판 성형공정의 단면해석)

  • 구본영;백승준;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.36-39
    • /
    • 1998
  • To predict strain distributions and weld line movements in the forming processes of tailored blank sheets, the 2-dimensional finite element formulation is developed. The welding zone is modelled with the several, narrow finite elements. The material properties of weld elements are calculated from those of base metals, based on the experimental evaluation. To verify the finite element formulation developed, the forming process of an autobody door inner panel section is simulated. FEM predictions are compared and showed good agreements with experimental measurements.

  • PDF

Reduction of Drawing Process in Warm Forming Steel Sheets using Oil Pan (온간성형공법을 이용한 오일팬 드로잉공정 단축)

  • 최이천
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.88-94
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with steel sheets of SCP3C and SCP1 for improving deep drawability. Experiments were carried out in various working conditions such as forming temperature and lubricantion. The effect of lubricantion and temperature on drawabillity of steel sheets as well as thickness distribution of drawn oil pan were examined and discussed. One step forming at room temperature and uniform distribution of thickness was achieved at optimum formability for lubricantion. The optimum forming temperature was obtained that both the die and the blankholder were heated to 10$0^{\circ}C$ while the punch was cooled by circulating coolant of $0^{\circ}C$.

  • PDF