• Title/Summary/Keyword: sheath layer ground

Search Result 7, Processing Time 0.021 seconds

Effect of the Sheath Layer Ground of Telecommunication Cable to Induced Voltage Measurement (통신 케이블 쉬스 층 접지가 전력선 전자유도 전압 측정에 미치는 영향)

  • Lee, Sangmu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.713-719
    • /
    • 2015
  • The change in induced voltage according to the relationship of ground connection between the aluminum sheath layer and a conductor pair in a general telecommunication cable is analyzed. When a measurement is practiced under the condition of separated sheath grounds with an averaged ground resistance of $42.6{\Omega}$, the induced voltage decreases 10 % to the induced voltage without sheath grounds. The induced voltage decreases approximately 50 % in the case of a one-sided common ground and decreases by more than 90 % in the case of a both-sided common ground. This experimental result is similar to the values calculated using the methods of the ITU Directives. In addition, according to a comparison analysis utilizing this ITU method, the measurement error range will be below 10 % in the state of ground resistance of central office less than $10{\Omega}$ and for the terminal side with $100{\Omega}$ less or more.

Analysis on the Effects of the Induced Noise Voltage with the Grounded or Non-grounded Cable Sheath in the Power Inducting Situation (전력 유도 발생 시 케이블 쉬스 접지 여부에 따른 유도 잡음 전압 영향 분석)

  • Lee, Sang-Mu;Choi, Mun-Hwan;Cho, Pyoung-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.285-288
    • /
    • 2007
  • This article presents the change characteristics of induced noise whether the sheath layer of the cable is grounded or not. As what affects the induced noise, there are power influence or longitudinal transverse voltages and its weighted filtered voltage. The sheath ground is basicaly predicted to have the effects of alleviation on the power influence. But practically the effects may not happen in the case of common cable's sheath layer. Rather there are cases that the ground of sheath affects so that the noise level could increase. So we need to scrutinize the effects of the sheath gorund in the measures for the protection against electromagnetic induction by powerline or traction line system. And the evaluation of using the designated shielding purpose cable is needed.

  • PDF

Analysis on System Effects of SUS Tube in Optical Fiber Composite Power Cable Systems Using EMTP (EMTP를 이용한 광 복합 지중송전케이블 광 유니트 금속관의 시스템 영향분석)

  • Jung, Chae-Kyun;Jang, Tai-In;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1180-1185
    • /
    • 2014
  • This paper describes the effects on SUS tube of power optical fiber composite cable on underground transmission lines. The effects on grounding, air gap between SUS tube and metal sheath, contact resistance between outer semi-conducting layer and metal sheath and grounding of SUS tube application or not are variously analysed using EMTP in normal operating condition as well as single line to ground fault. From these results, in this paper, the scheme for protecting the electrically abnormal phenomena will be established on power-optical fiber composite cable of underground transmission lines. This paper can contribute to specification of grounding reference of SUS tube of optical fiber composite power cable system.

A Study on the Generation of the Earth Potential and Communication Line Noise (대지전위와 통신회선 잡음.발생에 대한 고찰)

  • Yeo, Sang-Kun;Park, Chan-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.181-189
    • /
    • 2007
  • This paper presents a experimental evidence of the generation of the earth potential and communication line noise from the electric railway. There is a critical measurement err in case of measuring the electrical power induced noise voltage and degree of cable balance in the field of earth potential generated. As a results, it has been found that the conventional cable has more noise immunity than shielded cable near the railway where the earth current flows through the sheath layer.

Simulation Study of Capacitively Coupled Oxygen Plasma with Plasma Chemistry including Detailed Electron Impact Reactions (전자충격반응을 포함하는 플라즈마 화학반응을 고려한 용량결합형 산소플라즈마의 전산모사 연구)

  • Kim, Heon Chang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.711-717
    • /
    • 2011
  • Two dimensional simulation results of a capacitively coupled oxygen plasma in a cylindrical reactor geometry are presented. Detailed electron impact reaction rates, which strongly depend on electron energy, are computed from collision cross sections of electrons with $O_2$ and O. Through the coupling of a three moment plasma model with a neutral chemistry/transport model are predicted spatiotemporal distributions of both charged species (electron, $O_2{^+}$, $O^+$, $O_2{^-}$, and $O^-$) and neutral species including ground states ($O_2$ and O) and metastables, known to play important roles in oxygen plasma, such as $O_2(a^1{\Delta}_g)$, $O_2(b^1{{\Sigma}_g}^+)$, $O(^1D)$, and $O(^1S)$. The simulation results clearly verify the existence of a double layer near sheath boundaries in the electronegative plasma.

Effect of Vascular Bundles and Fiber Sheaths in Nodes and Internodes of Gigantochloa apus Bamboo Strips on Tensile Strength

  • Atmawi DARWIS;Anne HADIYANE;Endah SULISTYAWATI;Ihak SUMARDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.309-319
    • /
    • 2023
  • Bamboo culm is in the form of a tube/pipe, composed of internodes which are bounded by a partition/diaphragm (node). Anatomically, bamboo is composed of vascular bundles and parenchyma ground tissue. One of the constituents of vascular bundles is fibers that are grouped to form a fiber sheath. The anatomical structure of the nodes and internodes is thought to influence the strength of bamboo strips, including tensile strength. This study aimed to determine the characteristics of vascular bundles (distribution and fiber percentage) and their effects on the density and tensile strength of Gigantochloa apus bamboo strips with and without nodes. The bamboo culms were divided into three parts (outer, middle, and inner) along the radial direction. The results showed that the distribution of vascular bundles and percentage of fiber sheaths decreased significantly from the outer to the inner layer. This also had a significantly decreased density and tensile strength. Furthermore, the number of vascular bundles (in the transverse plane) was greater in the internodes than in the nodes. Anatomically, the orientation of the vascular bundles at irregular nodes is observed in the radial and tangential planes, where the direction is not only in the axial direction, but also in the radial and tangential directions. This caused the tensile strength of the G. apus bamboo strips to be lower at the nodes than at the internodes.

Blue-green algae as a Potential agent Causing Turf Leaf Disease (잔디 엽병을 유발하는 잠재인자로서의 남조류(Blue-Green algae)에 대한 관찰보고)

  • Park, Dae-Sup;Lee, Hyung-Seok;Hong, Beom-Seok;Choi, Byoung-Man;Cheon, Jae-Chan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • Recently irregular dark-colored patches were found on the Kentucky teeing ground in a golf course in Gyunggi providence. Interestingly, blue-green algae from the leaf tissue sample containing black spot-stained symptoms were largely observed through microscopic study. In general, algae present on the upper soil surface or in the upper layer of root zone form dark brown layers of scum or crust, which invoked harmful effects to turf growth such as poor drainage, inhibition of new root development. In this observation, unlike the algae were sometime found in senescing leaves on contacted soil in July and August, the blue-green algae were detected within black spot-stained Kentucky bluegrass leaf tissues including leaf blade, ligule, auriclea as well as leaf sheath. The blue-green algae were also detected on the leaf and stem tissue adjacent to the symptomatic leaf tissues. Two species of blue-green algae, Phomidium and Oscillatoria, were greatly observed. Oscillatoria species was more commonly notified in all samples. In addition, the two species were found on a putting green showing yellow spot disease at another golf course in Gyunggi providence. The data from chemical control assay revealed that chemicals such as propiconazole, iprodione, and azoxystrobin decreased blue-green algae population and leaf spots, which finally resulted in enhanced leaf quality. All taken together, we strongly suggested that the disease-like phenomenon by blue-green algae might be very closely mediated with infection/translocation process in relation with turfgrass. It indicates that blue-green algae in turf management may play an adverse role as a secondary barrier as well as a pathogenic agent. This report may be helpful for superintendents to recognize and understand the fact that algae control should be provided more cautiously and seriously than we did previously in upcoming golf course management.