• Title/Summary/Keyword: shear-walls

Search Result 722, Processing Time 0.026 seconds

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.

Strength and Deformation Capacity of R/C Shear Walls Using High Strength Concrete under Cyclic loads (고강도 콘크리트를 사용한 R/C 전단벽의 강도와 변형능력)

  • 오영훈;윤형도;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.72-77
    • /
    • 1990
  • Results are presented of the cyclic loading tests of there low-rise shear wall assembligies using high strength concrete. The possibilities of achieving an acceptable level of energy dissipation in one story shear walls, mainly by flexural yielding, are examined. Mechanisms of flexural and shear resistance are reviewed with emphasis on aspects of sliding shear. Detrimental effects of sliding shear are demonstrated together with improvement achieved by use of diagonal wall reinforcements. It is postulated that with suitably arranged diagonal wall reinforcements a predominantly flexural response mode with good energy dissipation characteristics can be achieved in low-rise shear walls.

  • PDF

Improvement of a Requirement for Providing Special Boundary Element Considering Feature of Domestic High-rise Shear Walls

  • Kim, Taewan
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.43-52
    • /
    • 2013
  • The reinforced concrete shear walls are being widely used in the domestic high-rise residential complex buildings. If designed by current codes, the special boundary element is needed in almost all high-rise shear wall buildings. This is because the equation for determining the provision of the special boundary element in the current codes cannot reflect the characteristics of the domestic high-rise shear walls with high axial load ratio and high proportion of elastic displacement to total displacement. In this study, a new equation to be able to reflect the characteristics is proposed. By using the equation, the special boundary element may not be necessary in certain cases so that structural engineers can relieve the burden of installing the special boundary element in every high-rise shear wall.

Shear Strength of Inn-Rise Reinforced Concrete Shear Walls with Truss Model (트러스 모델에 의한 철근콘크리트 저형 전단벽의 전단강도)

  • 윤현도;최창식;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.97-102
    • /
    • 1992
  • To predict the shear strength of low - rise reinforced concrete shear walls with boundary elements, truss model theory considering the Vecchio - Collins stress - strain curve for softened concrete is applied. The model transforms cracked shear walls with a truss which consists of vertical bar. horizontal bar and diagonal concrete strut, and is based on equilibrium and compatibility conditions among three truss components, as well as stress - strain relationship considered for softening in diagonal concrete strut. In barbell specimens(M/VD = 0.75. fc = 420 kg/$\textrm{cm}^2$), the ratio of experimental to analytical maximum shear strength was within 0.83 ν$_{exp}$. / ν$_{cal}$. 1.25 with a relatively good agreement. As a result, the truss model was observed to be capable of predicting the maximum shear strength wi th a reasonable accuracy.acy.

  • PDF

Investigation of the shear behaviour of multi-story reinforced concrete walls with eccentric openings

  • Taleb, Rafik;Bechtoula, Hakim;Sakashita, Masanubo;Bourahla, Noureddine;Kono, Susumu
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.361-377
    • /
    • 2012
  • Four Reinforced Concrete (RC) single span structural walls having various opening sizes and locations were constructed and tested under lateral reversed cyclic loading at the structural laboratory of Kyoto University. These specimens were scaled to 40% and represented the lower three stories of a six-storied RC building. The main purposes of the experimental tests were to evaluate the shear behavior and to identify the influence of opening ratios on the cracks distribution and shear strength of RC structural walls. The shear strength of the specimens was estimated by combining the shear strength of structural wall without openings and the reduction factor that takes into account the openings. Experimental and analytical results showed that the shear strength was different depending on the loading direction due to opening locations. A two-dimensional finite element analysis was carried out to simulate the performance of the tested specimens. The constructed finite elements model simulated the lateral load-drift angle relations quite well.

Shear Resistance Capacity Length of Traditional Wooden Frame's Wall divided into Small Frame (세부목골조로 구성된 전통목골조 벽체 전단저항능력)

  • Hwang, Jong-Kook;Kwon, Yang-Hee;Bae, Dong-Hun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.11-18
    • /
    • 2019
  • The purpose of this study was to estimate the resistance capacity of a traditional wooden house with shear walls made of wood panel. In order to achieve the purpose of the study, the load - displacement test was carried out and the resistance moment values of the shear walls were proposed. The shear walls were made by placing studs with a nominal dimension of $38mm{\times}89mm$ at intervals of 600 mm, and attaching 12 mm thick plywood with 8-d size pegs at intervals of 150 mm. The type of traditional building wall was classified and showed the moment resistance ability of each wall type. This value is expressed as a proportional value divided by the moment resisting capacity of the standard size shear walls not divided into the divided small frames. Although some frames have proportional values larger than 1.0 even though they have openings, most of them show values smaller than 1.0. Also, even without the openings, it showed a smaller value than 1, such as 0.84 and 0.67.

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.

Seismic assessment of thin steel plate shear walls with outrigger system

  • Fathy, Ebtsam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.267-282
    • /
    • 2020
  • The seismic performance and failure modes of the dual system of moment resisting frames and thin steel plate shear walls (TSPSWs) without and with one or two outrigger trusses are studied in this paper. These structural systems were utilized to resist vertical and lateral loads of 40-storey buildings. Detailed Finite element models associated with nonlinear time history analyses were used to examine seismic capacity and plastic mechanism of the buildings. The analyses were performed under increased levels of earthquake intensities. The models with one and two outriggers showed good performance during the maximum considered earthquake (MCE), while the stress of TSPSWs in the model without outrigger reached its ultimate value under this earthquake. The best seismic capacity was in favour of the model with two outriggers, where it is found that increasing the number of outriggers not only gives more reduction in lateral displacement but also reduces stress concentration on thin steel plate shear walls at outrigger floors, which caused the early failure of TSPSWs in model with one outrigger.

Seismic Response Analysis of Lightly Reinforced Concrete Shear Walls

  • Rhee, In-Kyu
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.73-82
    • /
    • 2010
  • Global and local behaviors of a lightly RC shear walls are investigated in this paper. For the sake of cyclic behaviors, nominal ground accelerations of 0.15 g, 0.40 g and 0.55 g which associated with natural periods of the walls are applied as listed in French CAMUS-2000 shake table test. Modified Kent & Park model, Drucker-Prager model for concrete material and $Giufr\acute{e}$-Menegotto-Pinto model for rebar are used for time history analyses using fiber/solids elements respectively. Alternatively, Eulerian beam analysis are discussed by imposing inelastic hinges at the most possible plastic hinge location using modified Takeda's trilinear model with stiffness reduction. Relative displacements, base shears, bending moments of 5-story shear building with 36-tons of mass under bi-lateral seismic excitation are extracted and compared with EC-8, PS-92 and KBC-09 provisions. Multi-scaled degradation process; material damage, elemental fracture and structural failure in turn is discussed in the view of numerical accuracy, efficiency and limitation depending on three different model-based analyses.

  • PDF