• 제목/요약/키워드: shear-stress

검색결과 3,956건 처리시간 0.029초

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

미소 표면 결함에서 발생하는 초기 균열의 거동에 미치는 응력장의 영향 (The Effects of Stress Fields on Behavior of Primary Cracks Initiated at Micro Surface Defects)

  • 김진봉;김만근
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.25-32
    • /
    • 1999
  • This study has been performed to investigate the stress distribution around defects that behave as stress concentrators. Besides, the effect of stress interaction effects on the initiation of primary cracks were also investigated by rotary bending fatigue tests which were performed with specimens drilled micro surface defects and the stress distribution was analyzed using Finite Element Method. In addition, the stress interaction effects around defects and cracks were investigated by comparing the results of experiments and F.E.M. The results obtained are summarized as follows ; 1) Area which slip and micro cracks initiated at micro surface defects is between the maximum shear stress points and this area is over than ${\pm}30^{\circ}$ from the maximum stress point along the defect edge. 2) The stress interaction effect for the small size defect is larger than that of large size defect when the interval between them is near 3) Interval which there is no shear stress interaction effect analyzed by F.E.M. is larger than that of experimental results.

  • PDF

Interfacial properties of composite shotcrete containing sprayed waterproofing membrane

  • Park, Byungkwan;Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Kim, Jintae;Choi, Myung-Sik;Jeon, Seokwon;Chang, Soo-Ho
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.385-397
    • /
    • 2018
  • This study evaluates the interfacial properties of composite specimens consisting of shotcrete and sprayed waterproofing membrane. Two different membrane prototypes were first produced and tested for their waterproofing ability. Then composite specimens were prepared and their interfacial properties assessed in direct shear and uniaxial compression tests. The direct shear test showed the peak shear strength and shear stiffness of the composites' interface decreased as the membrane layer became thicker. The shear stiffness, a key input parameter for numerical analysis, was estimated to be 0.32-1.74 GPa/m. Shear stress transfer at the interface between the shotcrete and membrane clearly emerged when measuring peak shear strengths (1-3 MPa) under given normal stress conditions of 0.3-1.5 MPa. The failure mechanism was predominantly shear failure at the interface in most composite specimens, and shear failure in the membranes. The uniaxial compression test yielded normal stiffness values for the composite specimens of 5-24 GPa/m. The composite specimens appeared to fail by the compressive force forming transverse tension cracks, mainly around the shotcrete surface perpendicular to the membrane layer. Even though the composite specimens had strength and stiffness values sufficient for shear stress transfer at the interfaces of the two shotcrete layers and the membrane, the sprayed waterproofing membrane should be as thin as possible whilst ensuring waterproofing so as to obtain higher strength and stiffness at the interface.

불균형모멘트를 고려한 RC 무량판 슬래브 설계방법 (Design Method of RC Flat Plate Slab Considering Unbalanced Moment)

  • 송진규;송호범;오상원;한선애
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.149-152
    • /
    • 2008
  • 구조설계기준에서, 슬래브의 최대 펀칭전단응력은 연직하중에 의한 직접전단과 불균형모멘트에 의한 편심전단의 조합응력으로 규정하고 있다. 이것은 슬래브에 작용하는 펀칭전단응력에 불균형모멘트의 영향을 반영한 것이다. 그러나 부재의 저항성능 즉 펀칭전단강도에는 슬래브의 불균형모멘트강도 영향을 전혀 고려하고 있지 않다. 본 논문에서는 이를 위하여 펀칭전단-불균형모멘트 상관모델을 제시하고 이를 2차원으로 표현하였다. 상관모델을 통하여, 슬래브의 펀칭전단강도를 결정하는데 있어 불균형 모멘트강도를 어떻게 반영할 것인지에 대한 방안을 제시하였으며 전단보강재가 불균형모멘트강도에 미치는 영향을 분석하고 이를 구조설계에 반영하기 위한 유효폭확대계수의 적용을 제안하였다.

  • PDF

불포화 점성토의 전단강도 특성에 관한 연구 (A Study on the Characteristics of Shear Strength in Unsaturated Cohesive Soils)

  • 유범식;조덕현
    • 한국농공학회지
    • /
    • 제23권3호
    • /
    • pp.96-104
    • /
    • 1981
  • In order to investigate the characteristics of the shear strength of the unsaturated cohesive soils which has mean characters of sand and clay widely used for banking, I selected soil samples from An-sung district and, against it, performed direct shear test and unconfined compression test changing grain size, compaction energy and moisture content and also performed triaxial compression test under optimum moisture content. The results are as follows; 1.As the passing percent of the No. 200 sieve increased from 23.6% to 56.1%, cohesion increased from 0. 202kg/cm2 to 0. 398kg/cm2 under the direct shear test and from 0.38 kg/cm2 to 1. 05kg/cm2 under the tria4al compression test, internal friction angle decreased from 44. 78$^{\circ}$ to 34. 34$^{\circ}$ under the direct shear test and from 31. 88$^{\circ}$ to 13. 31$^{\circ}$ under the triaxial compression test. 2.Cohesion showed it's maximum value around OMC and internal friction angle showed a tendency to increase according to the decrease of water content but it's increasing ratio was relatively slow. 3.Decreasing ratio of cohesion and internal friction angle was relatively sensitive according to the decrease of compaction energy. 4.The smaller of the vertical stress and the coarser of the grain size of samples, changing of the volume showed a tendency to increase and as the increase of water content, the shear displacement (dh) at failure shear stress ($\tau$f) showed maximum and the $\tau$f-dh curve was gentle. 5.To synthesize the results of the direct shear test and the triaxial compression test, cohesion showed higher under the triaxial compression test and internal friction angle showed a tendeney to appear higher under the direct shear test. It seems that we can get correspondent results by removing the side friction of mold with soils and adjusting the vertical stress and shearing speed under the direct shear test.

  • PDF

The Use of Finite Element Method to Predict the Hot Shear-Welding Process of Two Aluminum Plates

  • Shang, Li-Dong;Lee, Kyeng-Kook;Jin, In-Tai
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.426-430
    • /
    • 2008
  • Hot shear-welding is a process of bonding two plates together by using shearing stress in a controlled manner. This study dealt with the hot shear-welding process of two aluminum plates. These two plates were piles up in the shear-welding mold. Due to the shearing stress, these two plates were cut off longitudinally, and meantime they were welded together. During this process the control of the surplus material flow is very important, and it can be realized by designing the overlapping length and the shape of the cavity. The commercial software Deform-3D was employed to predict the effect of these two factors. The overlapping length and the shape of the cavity that presents the optimum design was then developed to get a good shear-welding process.

  • PDF

항공기 복합재 날개구조 전단흐름 해석 (Shear Flow Analysis of Aircraft Composite Wing Structure)

  • 최익현;김성찬;김성준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Traditionally aluminum alloy have been used in manufacturing of aircraft structures, and semi-monocoque structural concept have been mainly applied in structural design of fuselage and wing. However, recently monocoque structural concept is applied in many small-size aircraft structures manufactured with composite materials. In such case appling monocoque structural concept, in initial conceptual design stage on wing, it is not easy to analyze shear flow using classical shear flow analytical method because composite skin structure can support span-wise tension/compression stress as well as sectional shear stress. In this study, an extended shear-flow analytical method to apply to composite monocoque structural concept was developed through extending the classical shear-flow analytical method.

  • PDF

개구부를 위해 인위적 손상을 입은 철근콘크리트 장방형 전단벽의 내진거동 (Seismic Behavior of Artificially Damaged R/C Rectangular Shear Walls with Opening Configurations)

  • 김선우;한병찬;김효진;최기봉;최창식;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.457-460
    • /
    • 2004
  • This study is an experimental study to investigate the shear behavior of reinforced concrete shear walls with openings and to determine the shear strength of those walls. This paper compares rigidities of walls with opening by different opening types. The experimental results, as expected, show that the crack load, yield load, and limited load are inferior for specimen with larger opening area. The magnitude of axial stress and shear stress had a significant effect on the deformability of shear walls with opening.

  • PDF

지오멤브레인/지오텍스타일의 접촉 전단강도 평가 (The Evaluation of Interface Shear Strength Between Geomembrane and Ceotextile)

  • 서민우;박준범;김운영
    • 한국지반공학회논문집
    • /
    • 제18권1호
    • /
    • pp.79-89
    • /
    • 2002
  • 폐기물 매립지에는 차수 및 보호기능을 하는 다양한 토목섬유가 사용된다. 토목섬유 사이의 접촉(interface) 전단강도는 사면에 설치되는 차수 및 최종 덮개시설의 안전한 설계를 위해 곡 필요한 물성치로서, 본 연구에서는 대형 직접전단 시험기를 사용하여 지오멤브레인(GM)과 지오텍스타일(GT) 사이의 접촉 전단강도를 측정하였다. 본 논문에서는 Mohr-Coulomb 파괴 포락선을 이용하여 전단강도를 평가하였으며, 연직하중, 수팀상태, 지오멤브레인(GM)의 표면상태-texturing 유무 - 등이 전단강도에 미치는 영향을 알아보았다. 분석 결과 연직하중이나 수침상태가 전단강도에 미치는 영향은 각각 하중의 크기와 토목섬유의 종류에 따라 정도가 다르게 나타났다. 사면에 설치되는 토목섬유의 경우, 다양한 현장조건-상재하중, 수침상태, 사용되는 토목섬유의 종류을 고려한 시험 결과를 통해 얻은 물성치를 이용하여야 안전한 설계가 될 수 있을 것이다.

Soil slip을 고려한 터널굴착에 의한 단독말뚝의 거동연구 (A Study on the Behaviour of a Single Pile to Tunnelling Including Soil Slip)

  • 이철주
    • 한국지반환경공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.59-67
    • /
    • 2009
  • 본 연구에서는 단독말뚝의 주변에서 실시되는 터널의 굴착이 지반 및 말뚝에 미치는 영향을 3차원 수치해석을 통하여 분석하였다. 수치해석에서는 말뚝과 주변지반 사이에 경계면요소를 이용하여 소성항복 발생조건을 모델링하였다. 수치해석을 통하여 풍화토 및 풍화암에 시공된 터널과 말뚝의 상호거동에 대한 분석을 실시하였다. 수치해석을 통해 말뚝의 침하, 말뚝과 지반 경계면에서의 상대변위, 전단응력 및 말뚝의 축력변화를 분석하였다. 특히 터널의 굴착과 관련된 전단응력의 전이과정에 대한 심도있는 분석을 실시하였다. 터널굴착에 의한 말뚝-지반 경계면에서 상대변위의 변화로 인하여 말뚝에 작용하는 전단응력 및 축력의 분포가 변하게 된다. 말뚝 본체 대부분에서는 상향의 전단응력이 발생하는 반면(Z/L=0.0-0.8), 말뚝선단부근에서는(Z/L=0.8-1.0) 하향의 전단응력이 발생하여 말뚝에 인장력이 발생된다. 수치해석을 통해서 터널굴착이 말뚝 거동에 미치는 영향을 상세하게 분석하였다.

  • PDF