• Title/Summary/Keyword: shear-span depth ratio

Search Result 231, Processing Time 0.023 seconds

Structural Reliability of Thick FRP Plates subjected to Lateral Pressure Loads

  • Hankoo Jeong;R. Ajit Shenoi;Kim, Kisung
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.38-57
    • /
    • 2000
  • This paper deals with reliability analysis of specially orthotropic plates subjected to transverse lateral pressure loads by using Monte Carlo simulation method. The plates are simply supported around their all edges and have a low short span to plate depth ratio with rectangular plate shapes. Various levels of reliability analyses of the plates are performed within the context of First-Ply-Failure(FPF) analysis such as ply-/laminate-level reliability analyse, failure tree analysis and sensitivity analysis of basic design variables to estimated plate reliabilities. In performing all these levels of reliability analyses, the followings are considered within the Monte Carlo simulation method: (1) input parameters to the strengths of the plates such as applied transverse lateral pressure loads, elastic moduli, geometric including plate thickness and ultimate strength values of the plates are treated as basic design variables following a normal probability distribution; (2) the mechanical responses of the plates are calculated by using simplified higher-order shear deformation theory which can predict the mechanical responses of thick laminated plates accurately; and (3) the limit state equations are derived from polynomial failure criteria for composite materials such as maximum stress, maximum strain, Tsai-Hill, Tsai-Wu and Hoffman.

  • PDF

Free vibration of imperfect sigmoid and power law functionally graded beams

  • Avcar, Mehmet
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.603-615
    • /
    • 2019
  • In the present work, free vibration of beams made of imperfect functionally graded materials (FGMs) including porosities is investigated. Because of faults during process of manufacture, micro voids or porosities may arise in the FGMs, and this situation causes imperfection in the structure. Therefore, material properties of the beams are assumed to vary continuously through the thickness direction according to the volume fraction of constituents described with the modified rule of mixture including porosity volume fraction which covers two types of porosity distribution over the cross section, i.e., even and uneven distributions. The governing equations of power law FGM (P-FGM) and sigmoid law FGM (S-FGM) beams are derived within the frame works of classical beam theory (CBT) and first order shear deformation beam theory (FSDBT). The resulting equations are solved using separation of variables technique and assuming FG beams are simply supported at both ends. To validate the results numerous comparisons are carried out with available results of open literature. The effects of types of volume fraction function, beam theory and porosity volume fraction, as well as the variations of volume fraction index, span to depth ratio and porosity volume fraction, on the first three non-dimensional frequencies are examined in detail.

The Effects of Steel-Fiber Reinforcement on High Strength Concrete Replaced with Recycled Coarse Aggregates More Than 60% (순환굵은골재 60% 이상 사용한 고강도 콘크리트에 대한 강섬유 보강 효과)

  • Kim, Yoon-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.404-417
    • /
    • 2016
  • The purpose of this study is to examine the extent to which the deterioration in strength of high strength concrete of 60MPa replaced by a large amount of recycled coarse aggregates (more than 60% to 100% of replacement ratio) could be recovered with steel fiber reinforcement through material compressive strength test and shear failure test on short and middle beams and then to offer useful data for aggregate supply system of a sustainable resource circulation type. This study first examined the results of previous related tests. The results of the material compressive strength tests confirmed that when using a combination of steel fiber reinforcements of volumn ratio 0.75% and high quality recycled coarse aggregates with an water absorption rate within 2.0%, the strength characteristics of high strength concrete of 60MPa level were not only restored to the strength level of concrete made with natural aggregates, but also showed superior ductility. And the shear failure tests on short and middle beams using recycled coarse aggregates more than 60% with shear span to depth ratio (a/d) of 2 and 4 controlled by shear forces mainly confirmed that effects of superior shear strength increase and ductile behavior characteristics were showed by steel fiber reinforcements.

Structural Behavior of Reinforced Concrete Beam Strengthened in Shear by Carbon Fiber Mesh and Mortar (탄소섬유메쉬와 모르터로 전단 보강된 RC보의 거동에 관한 연구)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Lee, Woo-Jin;Lee, Jong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.205-211
    • /
    • 2004
  • The purpose of this study is to investigate shear strengthening effects and behaviour of RC beams strengthened in shear by Carbon Fiber Mesh(CFM) and mortar for fixing CFM to concrete. Test parameters in experiment are shear span-to-depth ratio, layout of CFM and number of clip. From the test, it was shown that the governing failure patten was the bond failure between cover mortar and RC beam initiated at about 60% of maximum strength. And the strength of CFM was developed up to 19.6% of it's maximum tensile strength when the specimen reached to failure. The most effective enhancement using CFM and mortar were to attach CFM diagonally to concrete in a/d of 1.0 and increase the number of cilps in a/d of 1.5, respectively.

Effects of a new stirrup hook on the behavior of reinforced concrete beams

  • Zehra Sule Garip;Furkan Erdema
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • The primary aim of this study is to introduce an innovative configuration for stirrup hooks in reinforced concrete beams and analyze the impact of factors such as stirrup spacing, placement, and hook lengths on the structural performance of reinforced concrete beam elements. A total of 18 specimens were produced and subjected to reversed cyclic loading, with two specimens serving as reference specimens and the remaining 16 specimens utilizing a specifically developed stirrup hook configuration. The experiment used reinforced concrete beams scaled down to half their original size. These beams were built with a shear span-to-depth ratio of 3 (a/d=3). The experimental samples were divided into two distinct groups. The first group comprises nine test specimens that consider the contribution of concrete to shear strength, while the second group consists of nine test specimens that do not consider this contribution. The preparation of reference beam specimens for both groups involved the utilization of standard hooks. The stirrup hooks in the test specimens are configured with a 90-degree angle positioned at the midpoint of the bottom section of the beam. The criteria considered in this study included the distance between hooks, hook angle, stirrup spacing, hook orientation, and hook length. In the experimental group examining the contribution of concrete on shear strength, it was noted that the stirrup hooks of both the R1 reference specimen and specific test specimens displayed indications of opening. However, when the contribution of concrete on shear strength was not considered, it was observed that none of the stirrup hooks proposed in the R0 reference specimen and test specimens showed any indications of opening. Neglecting the contribution of concrete in the assessment of shear strength yielded more favorable outcomes regarding structural robustness. The study found that the strength values obtained using the suggested alternative stirrup hook were similar to those of the reference specimens. Furthermore, all the test specimens successfully achieved the desired strengths.

Behavioral Characteristics and Energy Dissipation Capacity of Short Coupling Beams with Various Reinforcement Layouts (다양한 배근상세를 갖는 짧은 연결보의 주기거동 특성과 에너지소산능력의 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2008
  • The cyclic behavior and energy dissipation mechanism of short coupling beams with various reinforcement layouts were studied. For numerical analysis of coupling beams, nonlinear truss model was used. The results of numerical analysis showed that the coupling beams with conventional reinforcement layout showed pinched cyclic behavior without significant energy dissipation, whereas the coupling beams with diagonal reinforcement exhibited stable cyclic behavior without pinching. The energy dissipation of the coupling beams was developed mainly by diagonal reinforcing bars developing large plastic strains rather than concrete which is a brittle material Based on this result, simplified equations for evaluating the energy dissipation of coupling beams were developed. For verification, the predicted energy dissipation was compared with the test results. The results showed that the simplified equations can predict the energy dissipation of short coupling beams with shear span-to-depth ratio less than 1.25 with reasonable precision, addressing various design parameters such as reinforcement layout, shear span-to-depth ratio, and the magnitude of inelastic displacement. The proposed energy equations can be easily applied to performance-based seismic evaluation and design of reinforced concrete structures and members.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Evaluation of Structural Performance of Reinforced Concrete Beams According to Water Absorption of Recycled Coarse Aggregate (순환굵은골재 흡수율에 따른 철근콘크리트 보의 구조 성능 평가)

  • Kim, Sang Woo;Han, Dong Seok;Lee, Hyun Ah;Ko, Man Young;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2012
  • This study estimates the flexural behavior of reinforced recycled aggregate concrete beams. Three specimens with different types and water absorption of coarse aggregates were constructed and tested. Not only all specimens were designed to be subjected to 4-point concentrated loads, but also the shear span-to-depth ratio of 2.5 was adjusted to all specimens to increase the effect of shear. A nonlinear flexural analysis considering the tension stiffening effect of concrete was performed to predict the moment versus curvature relationships of the specimens. Furthermore, a nonlinear finite element analysis considering the effect of shear was carried out to estimate the behavior of the specimens. It can be found from experimental results that the flexural strength and the crack properties of the specimens with recycled coarse aggregate having a water absorption of 6% were similar to those of the specimen with natural aggregates. The comparison between the experimental and analytical results showed that existing analytical methods can be successfully used to predict the behavior of reinforced recycled aggregate concrete beams.

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Effect of Aggregate Size on the Shear Capacity of Lightweight Concrete Continuous Beams (경량콘크리트 연속보의 전단내력에 대한 골재크기의 영향)

  • Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.669-677
    • /
    • 2009
  • Twenty-four beam specimens were tested to examine the effect of the maximum aggregate size on the shear behavior of lightweight concrete continuous beams. The maximum aggregate size varied from 4 mm to 19 mm and shear span-to-depth ratio was 2.5 and 0.6 in each all-lightweight, sand-lightweight and normal weight concrete groups. The ratio of the normalized shear capacity of lightweight concrete beams to that of the company normal weight concrete beams was also compared with the modification factor specified in ACI 318-05 for lightweight concrete. The microphotograph showed that some unsplitted aggregates were observed in the failure planes of lightweight concrete beams, which contributed to the enhancement of the shear capacity of lightweight concrete beams. As a result, the normalized shear capacity of lightweight concrete continuous beams increased with the increase of the maximum aggregate size, though the increasing rate was lower than that of normal weight concrete continuous beams. The modification factor specified in ACI 318-05 was generally unconservative in the continuous lightweight concrete beams, showing an increase of the unconservatism with the increase of the maximum aggregate size. In addition, the conservatism of the shear provisions of ACI 318-05 was lower in lightweight concrete beams than in normal weight concrete beams.