• Title/Summary/Keyword: shear-key

Search Result 594, Processing Time 0.02 seconds

Effects of Dietary Acetyl-L-Carnitine on Meat Quality and Lipid Metabolism in Arbor Acres Broilers

  • Zhang, Yong;Ma, Qiugang;Bai, Xiumei;Zhao, Lihong;Wang, Qiang;Ji, Cheng;Liu, Laiting;Yin, Haicheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1639-1644
    • /
    • 2010
  • An experiment was conducted to evaluate the effects of dietary acetyl-L-carnitine (ALC) on growth performance, carcass characteristics, meat quality and lipid metabolism in broilers. A total of 240 one-day-old male Arbor Acres broilers were randomly allocated to 4 dietary treatments (0, 300, 600, and 900 mg/kg dietary ALC supplementation, respectively). Compared with the control treatment, addition of ALC resulted in lower (linear effect, p<0.05) ADG and AFI. Abdominal fat percentage decreased (linear effect, p<0.05) as dietary ALC was increased, but there was no effect on dressing percentage, breast muscle percentage or thigh muscle percentage. Breast muscle pH value 24 h post-mortem increased (linear effect, p<0.05), but there were no significant differences among treatments. However, thigh muscle pH value increased (linear effect, p<0.05) as dietary ALC was increased. Breast and thigh muscle $a^*$ values increased (linear effect, p<0.05), and breast and thigh muscle $b^*$ values decreased (linear effect, p<0.05) with increased ALC in the diet. In addition, breast and thigh muscle shear force value decreased (linear effect, p<0.05) as dietary ALC was increased. Total cholesterol, triglyceride, low-density lipoprotein cholesterol and lipoprotein lipase decreased (linear effect, p<0.05) and free fatty acid and lipase in serum increased (linear effect, p<0.05) with increased ALC in diets.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.327-335
    • /
    • 2017
  • To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.

Wind-induced responses of supertall buildings considering soil-structure interaction

  • Huang, Yajun;Gu, Ming
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.223-234
    • /
    • 2018
  • In this study, a simplified three-dimensional calculation model is developed for the dynamic analysis of soil-pile group-supertall building systems excited by wind loads using the substructure method. Wind loads acting on a 300-m building in different wind directions and terrain conditions are obtained from synchronous pressure measurements conducted in a wind tunnel. The effects of soil-structure interaction (SSI) on the first natural frequency, wind-induced static displacement, root mean square (RMS) of displacement, and RMS of acceleration at the top of supertall buildings are analyzed. The findings demonstrate that with decreasing soil shear wave velocity, the first natural frequency decreases and the static displacement, RMS of displacement and RMS of acceleration increase. In addition, as soil material damping decreases, the RMS of displacement and the RMS of acceleration increase.

Hemorheology and Cardiovascular Disease

  • Cho, Young-I.;Kensey, Kenneth R.
    • 순환기질환의공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.3-18
    • /
    • 2002
  • Hemorheology plays an important role in atherosclerosis. Hemorheologic properties of blood include whole blood viscosity, plasma viscosity, hemaocrit, RBC deformability and aggregation, and fibrinogen concentration in plasma. Blood flow is determine by three parameters (pressure, lumen diameter, and whole blood viscosity), whole blood viscosity is one of the key physiological variables. However, the significance of whole blood viscosity has not yet not been fully appreciated. Whole blood viscosity has a unique property, non-Newtonian shear-thinning characteristics, which is primarily due to the presence of RBCs. Hence, RBC deformability and aggregation directly affect the magnitude of blood viscosity, and any factors or diseases affecting RBC characteristics influence blood viscosity. Therefore, on can see that whole blood viscosity is the causal mechanism by which traditional risk factors such as hypertension, hyperlipidemia, smoking, exercise, obesity, age, and gender are related to atherogenesis. In this regard, we included whole blood viscosity in the three key determinants of injurious pulsatile flow that results in mechanical injury and protective adaptation in the arterial system. Because whole blood viscosity is a potential predictor of cardiovascular diseases, it should be measured in routine cardiovascular profiles. Incorporating whole blood viscosity measurements into a standard clinical protocol could improve our ability to identify patients at risk for cardiovascular disease and its complications.

  • PDF

The rheological behavior of collagen dispersion/poly(vinyl alcohol) blends

  • Lai, Guoli;Du, Zongliang;Li, Guoying
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • Blends of collagen dispersion (COL) with poly(vinyl alcohol) (PVA) in different weight ratios were investigated by oscillatory rheometry, Fourier transform-infrared spectroscopy and scanning electron microscopy. It was found that even with 80% of PVA, the COL/PVA blends behaved more like collagen dispersion than pure PVA solution in the dynamic thermal and frequency processing, for instance, a dominant elastic appearance (G'>G"), a similar shear thinning behavior and the thermal denaturation below $40^{\circ}C$. However, influence on the blend behaviour by PVA was noticeable, for instance, an increase of dynamic denaturation temperature, the decreasing intensity of amide I, II and III bands as well as the diminishing irregular pores on the surface of blends. The interaction between collagen and PVA could be observed, especially at the regions with low content or high content of PVA.

Using genetic algorithms method for the paramount design of reinforced concrete structures

  • Xu, Chuanhua;Zhang, Xiliang;Haido, James H.;Mehrabi, Peyman;Shariati, Ali;Mohamad, Edy Tonnizam;Hoang, Nguyen;Wakil, Karzan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.503-513
    • /
    • 2019
  • Genetic Algorithms (GAs) have found the best design for reinforced concrete frames. The design of the optimum beam sections by GAs has been unified. The process of the optimum-design sections has satisfied axial, flexural, shear and torsion necessities based on the designing code. The frames' function has contained the function of both concrete and reinforced steel besides the function of the frames' formwork. The results have revealed that limiting the dimension of frame-beam with the dimension of frame-column have increased the optimum function of the structure, thereby reducing the reanalysis requirement for checking the optimum-designed structures through GAs.

Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells

  • Xiang, Song;Chen, Ying-Tao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.893-907
    • /
    • 2014
  • Meshless local collocation method produces much better conditioned matrices than meshless global collocation methods. In this paper, the meshless local collocation method based on thin plate spline radial basis function and first-order shear deformation theory are used to calculate the natural frequencies and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and efficiency of present method are demonstrated.

Strength Models dependent on Load Configurations (하중형상과 콘크리트 부재의 강도모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.843-846
    • /
    • 2008
  • Rationality of strength models for structural concrete depends on how to treat loads on boundaries and load paths within members. Differentiation between strut-and-tie models and stress fields approaches for shear strength models is discussed in this paper for salient use of current design formula in design code provisions. How to model configuration of loads and stress states along the boundary for the regions under provides a key to realistic construction of stress fields together with STM.

  • PDF