• Title/Summary/Keyword: shear-key

Search Result 580, Processing Time 0.025 seconds

Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method

  • Gao, Yang;Xiao, Wan-Shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • This paper analyzes nonlinear free vibration of the circular nano-tubes made of functionally graded materials in the framework of nonlocal strain gradient theory in conjunction with a refined higher order shear deformation beam model. The effective material properties of the tube related to the change of temperature are assumed to vary along the radius of tube based on the power law. The refined beam model is introduced which not only contains transverse shear deformation but also satisfies the stress boundary conditions where shear stress cancels each other out on the inner and outer surfaces. Moreover, it can degenerate the Euler beam model, the Timoshenko beam model and the Reddy beam model. By incorporating this model with Hamilton's principle, the nonlinear vibration equations are established. The equations, including a material length scale parameter as well as a nonlocal parameter, can describe the size-dependent in linear and nonlinear vibration of FGM nanotubes. Analytical solution is obtained by using a two-steps perturbation method. Several comparisons are performed to validate the present analysis. Eventually, the effects of various physical parameters on nonlinear and linear natural frequencies of FGM nanotubes are analyzed, such as inner radius, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume indexes, different beam models.

Implementation of double scalar elastic damage constitutive model in UMAT interface

  • Liu, Pan Pan;Shen, Bo
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.153-162
    • /
    • 2021
  • This paper aims to simulate the isotropic elastic damage theory of Liu Jun (2012) using the self-programmed UMAT subroutine in the interface of ABAQUS. Liu Jun (2012)'s method based on the mechanic theory can not be used interactively with the currently commonly used finite element software ABAQUS. The advantage of this method in the paper is that it can interact with ABAQUS and provide a constitutive program framework that can be modified according to user need. The model retains the two scalar damage variables and the corresponding two energy dissipation mechanisms and damage criteria for considering the tensile and compressive asymmetry of concrete. Taking C45 concrete as an example, the relevant damage evolution parameters of its tensile and compressive constitutive model are given. The study demonstrates that the uniaxial tensile stress calculated by the subroutine is almost the same as the Chinese Concrete Design Specification (GB50010) before the peak stress, but ends soon after the peak stress. The stress-strain curve of uniaxial compression calculated by the subroutine is in good agreement with the peak stress in Chinese Concrete Design Specification (GB50010), but there is a certain deviation in the descending stage. In addition, this paper uses the newly compiled subroutine to simulate the shear bearing capacity of the shear key in a new structural system, namely the open-web sandwich slab. The results show that the damage constitutive subroutine has certain reliability.

A refined discrete triangular Mindlin element for laminated composite plates

  • Ge, Zengjie;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.575-593
    • /
    • 2002
  • Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the element displacement function, the exact displacement function of the Timoshenko's laminated composite beam as the displacement on the element boundary is used to derive the element displacements. The proposed element can be used for the analysis of both moderately thick and thin laminated composite plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples presented show that the present model indeed possesses the properties of higher accuracy for anisotropic laminated composite plates and is free of locking even for extremely thin laminated plates.

EXPERIMENTAL STUDY ON LASER AND HOT AIR REFLOW SOLDERING OF

  • Tian, Yanhong;Wang, Chunqing
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.469-474
    • /
    • 2002
  • Laser and hot air reflow soldering of PBGA solder ball was investigated. Experimental results showed that surface quality and shear strength of solder bumps reflowed by laser was superior than the solder bumps reflowed by hot air, and the microstructure inside the solder bumps reflowed by laser was much finer. Analysis on interfacial reaction showed that eutectic solder reacted with Au/Ni/Cu pad shortly after the solder was melted. Interface of solder bump reflowed by laser consists of a continuous AuSn$_4$ layer and remnant Au element. Needle-like AuSn$_4$ grew sidewise from interface, and then spread out to the entire interface region. A thin layer of Ni$_3$Sn$_4$ intermetallic compound was found at the interface of solder bump reflowed by hot air, AuSn$_4$ particles distributed inside the whole solder bump randomly. It is the combination effect of the continuous AuSn$_4$ layer and finer eutectic microstructure inside the solder bump reflowed by laser that resulted in higher shear strength.

  • PDF

A study on the Behavior of Large Drilled Shafts with Casings (케이싱이 있는 현장타설말뚝의 거동에 관한 연구)

  • Song, Byeong-Seok;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.99-106
    • /
    • 2005
  • 본 연구에서는 케이싱을 영구부재로 사용함으로써 기존의 현장타설말뚝과 비교하여 시공 성,품질균일성,경제성, 내구성 등을 검토한다. 연구결과 케이싱을 영구부재로 사용하는 경우, 케이싱의 재사용을 위한 인발작업이 불필요하게 되고,말뚝길이전체에 대하여 케이싱을 사용한다면 R.C.D공법에 서 적용하는 슬러리공벽보호공정이 불필요하므로 시공성이 향상되는 것으로 판단된다. 케이싱을 영구부 재로 사용하는 현장타설말뚝의 지지력은 일반 깊은 기초의 지지력을 산정하는 방법과 동일하게 구해질 수 있다. 대구경의 영구케이싱이 있는 현장타설말뚝을 시공한다면 공내에 간단한 장비와 인력을 투입해서 선단부를 그라우팅방법 등으로 강화시킴으로써 선단지지력을 효과적으로 증대시킬 수 있을 것이다. 또한 케이싱 내부로부터 미리제작한 구멍을 통하여 그라우팅, 전단키(shear key) 등을 주입 또는 압입 함으로써 주면마찰력도 크게 향상될 수 있을 것으로 사료된다.

  • PDF

Analysis of Slender RC Short Beams(a/d<2.5) with Vertical Stirrups using Nonlinear FEM (비선형유한요소해석을 이용한 수직 스터럽이 있는 RC 짧은 보의 해석)

  • Jeong, Jae-Pyong;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.259-264
    • /
    • 2002
  • This paper describes an attempt to develop a unified design approach for reinforced concrete short beam failing in shear based on a Arch Factor. Designing for short beam in shear is not as straightforward as designing for flexure due to the complicated interdependency of the variables involved and to the nonexistence of a rational theory tn current design code. Shear failure of reinforced concrete beams with stirrups is influenced greatly because of the actual geometrical shape(a/d) of the concrete and flexural reinforcement steel ratio, stirrup reinforcement ratio and concrete compression strength, size effect etc. The objective of this paper is to present a pilot study to develop a simplified physical model for estimating shear behavior of reinforced concrete short beams. The Key idea incorporated with this model is the Arch factor, introduced by Kim and White.

  • PDF

A Study on the Strength Evaluation of Micropile with Expanded Drill Hole (확공형 마이크로 파일의 강도 평가에 관한 연구)

  • Lee, Jae-Min;Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.74-81
    • /
    • 2014
  • This study proposes an advanced type of a micropile system. The proposed micropile system consists of perfobond ribs installed steel rod to improve shear capacity between the thread and the grout, and partially expanded drill holes to increase resistance capacity between the grout and the ground. This study contains experimental evaluations on the proposed micropile system to verify the shear capacity of perfobond rib installed on the steel rod and the load-carrying capacity of shear key created by the partially expanded drill hole. Push-out tests were conducted on a rolled screw thread and steel rods which perfobond ribs are installed instead of rolled screw, in order to compare their load-carrying capacity and behavioral characteristics. As a result, it was confirmed that the perfobond-rib steel rods show much superior structural behavior in terms of initial stiffness, ultimate load, and ductile behavior.

An Experimental Study on Dry-Connection for Precast Concrete Shear Walls (PC 전단벽 건식접합부에 관한 실험연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.21-24
    • /
    • 2005
  • In this study, new methods of PC panel connection using 'ㄷ'type steel connection is proposed for highly seismic zone. A study was carry out to investigate the connection behavior subjected to cyclic inelastic loading. Three planar type and two T type PC wall will be tested. The variables will be examined were the shear reinforcement existence of top and bottom walls. The specimens will be tested only reverse cyclic loading in accordance with a prescribed displacement history. To transfer the shear strength shear key set up between top and bottom wall. Failure mode, behavior, ductility and energy dissipation capacity of the specimens constructed by new connections wll be compared with those of monolithic walls and Han's(Han, Jun Hee, Seoul National University) model.

  • PDF

Joint shear strength prediction for reinforced concrete beam-to-column connections

  • Unal, Mehmet;Burak, Burcu
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.421-440
    • /
    • 2012
  • In this analytical study numerous prior experimental studies on reinforced concrete beam-to-column connections subjected to cyclic loading are investigated and a database of geometric properties, material strengths, configuration details and test results of subassemblies is established. Considering previous experimental research and employing statistical correlation method, parameters affecting joint shear capacity are determined. Afterwards, an equation to predict the joint shear strength is formed based on the most influential parameters. The developed equation includes parameters that take into account the effect of eccentricity, column axial load, wide beams and transverse beams on the seismic behavior of the beam-to-column connections, besides the key parameters such as concrete compressive strength, reinforcement yield strength, effective joint width and joint transverse reinforcement ratio.

DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test

  • Xu, Wen-Jie;Li, Cheng-Qing;Zhang, Hai-Yang
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.815-827
    • /
    • 2015
  • The mechanical behavior of soil and soil-rock mixture is investigated via the discrete element method. A non-overlapping combination method of spheres is used to model convex polyhedron rock blocks of soil-rock mixture in the DEM simulations. The meso-mechanical parameters of soil and soil-rock interface in DEM simulations are obtained from the in-situ tests. Based on the Voronoi cell, a method representing volumtric strain of the sample at the particle scale is proposed. The numerical results indicate that the particle rotation, occlusion, dilatation and self-organizing force chains are a remarkable phenomena of the localization band for the soil and soil-rock mixture samples. The localization band in a soil-rock mixture is wider than that in the soil sample. The current research shows that the 3D discrete element method can effectively simulate the mechanical behavior of soil and soil-rock mixture.