• 제목/요약/키워드: shear-induced particle migration

검색결과 5건 처리시간 0.02초

Prediction of Concrete Pumping Using Various Rheological Models

  • Choi, Myoung Sung;Kim, Young Jin;Kim, Jin Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.269-278
    • /
    • 2014
  • When concrete is being transported through a pipe, the lubrication layer is formed at the interface between concrete and the pipe wall and is the major factor facilitating concrete pumping. A possible mechanism that illustrates to the formation of the layer is the shear-induced particle migration and determining the rheological parameters is a paramount factor to simulate the concrete flow in pipe. In this study, numerical simulations considering various rheological models in the shear-induced particle migration were conducted and compared with 170 m full-scale pumping tests. It was found that the multimodal viscosity model representing concrete as a three-phase suspension consisting of cement paste, sand and gravel can accurately simulate the lubrication layer. Moreover, considering the particle shape effects of concrete constituents with increased intrinsic viscosity can more exactly predict the pipe flow of pumped concrete.

Effect of particle migration on the heat transfer of nanofluid

  • Kang, Hyun-Uk;Kim, Wun-Gwi;Kim, Sung-Hyun
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.99-107
    • /
    • 2007
  • A nanofluid is a mixture of solid nanoparticles and a common base fluid. Nanofluids have shown great potential in improving the heat transfer properties of liquids. However, previous studies on the characteristics of nanofluids did not adequately explain the enhancement of heat transfer. This study examined the distribution of particles in a fluid and compared the mechanism for the enhancement of heat transfer in a nanofluid with that in a general microparticle suspension. A theoretical model was formulated with shear-induced particle migration, viscosity-induced particle migration, particle migration by Brownian motion, as well as the inertial migration of particles. The results of the simulation showed that there was no significant particle migration, with no change in particle concentration in the radial direction. A uniform particle concentration is very important in the heat transfer of a nanofluid. As the particle concentration and effective thermal conductivity at the wall region is lower than that of the bulk fluid, due to particle migration to the center of a microfluid, the addition of microparticles in a fluid does not affect the heat transfer properties of that fluid. However, in a nanofluid, particle migration to the center occurs quite slowly, and the particle migration flux is very small. Therefore, the effective thermal conductivity at the wall region increases with increasing addition of nanoparticles. This may be one reason why a nanofluid shows a good convective heat transfer performance.

정밀여과에서 임계플럭스(Critical flux)에 관한 이론 및 실험적 고찰 (The Critical Flux in Microfiltration: Comparison between Theoretical and Experimental Values)

  • 윤성훈;이정학
    • 멤브레인
    • /
    • 제7권3호
    • /
    • pp.150-156
    • /
    • 1997
  • 입자의 정밀여과에 있어 임계플럭스의 이론치를 계산하기 위해 확산(diffusion), 횡방향이동(lateral migration), 전단유도확산(shear induced diffusion), 그리고 입자의 정전기적 반발력에서 기인하는 상호작용에 의한 상승이동(interation enhanced migration) 등의 입자의 역전달 이동을 고려하였다. 보통의 여과조건에서 제타전위의 절대치가 20~40mV이고 직경이 0.1$\mu{m}$~10$\mu{m}$인 입자의 경우 상호작용에 의한 이동이 가장 중요한 역전달 메카니즘이었다. 입자크기에 따라 계산된 임계플럭스값을 실험적으로 확인하기 위해 다양한 크기를 갖는 구형인 적철광(hematite)입자를 합성하여 여과실험을 수행하였다. 이 실험치는 역전달 이론에 의해 예측된 플럭스의 이론치와 비교적 잘 일치하였다.

  • PDF

Shear-induced Migration of Brownian Suspension in a Pressure-driven Microchannel Flow

  • Kim Y.W.;Jin S.W.;Kim S.W.;Yoo J.Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.84-85
    • /
    • 2004
  • Experimental study was conducted to characterize shear-induced lateral migration of $1.0-{\mu}m-diameter$ Brownian particles flowing through a rectangular microchannel which can be used to deliver small amount of liquids, drugs, biological agents and particles in microfluidic devices. Measurements were obtained by using a mercury lamp with a light of 532-nm wavelength, an inverted epi-fluorescence microscope, and a cooled CCD camera to record particle images. Peclet number was used as a parameter to assess the lateral distribution of the particles at a fixed volume fraction of $0.1\%$. It was shown that as Pe increased, particles were moved toward the centerline of the channel, which is in good agreement with previous studies.

  • PDF