• Title/Summary/Keyword: shear-friction

Search Result 966, Processing Time 0.027 seconds

Proposition of a Predicting Equation for Shear Capacity of HSC Beam (단면의 모멘트를 이용한 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Choi Jeong Seon;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.375-378
    • /
    • 2005
  • In the mechanism of beam shear failure, beam action and arch action always exist simultaneously. According to a/d ratio, the proportion and contribution between these two actions to shear capacity are merely changed. Moreover, the current codes recommendations are founded on the experimental results with normal strength concrete, the applicable range of $f'_{c}$ must be extended. Based on this mechanism and new requirement, an analytical equation is proposed for shear capacity prediction of reinforced concrete beams without stirrups. To reflect contribution change of two actions, stress variation in longitudinal reinforcement along the span is considered with Jenq and Shah Model. Dowel action and shear friction are also taken into account. Size effect is included to derive more precise equation. It is shown that the proposed equation is more accurate than other empirical equations and codes. So, it can be possible that wide range of a/d ratio is considered by one equation.

  • PDF

A study of the gradient establishment for Rock slope considering joints characteristics. (절리 특성을 고려한 암반사면의 절취경사 기준 설정에 관한 연구)

  • 이수곤;김부성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.501-508
    • /
    • 2002
  • The percentage of a mountainous district in our country is comparatively high but the concern for rock mass has been disregarded for a long time. Especially for rock slope, the most important factors are geometric characteristics and their shear strength parameter. In this paper, parametric studies are performed using the distinct element computer program UDEC-BB for rock slopes. Parameters adopted in this paper are joint angle, spacing, persistence, aperture and shear strength parameters (JRC, JCS, basic friction angle). To estimate slope stability, shear strength reduction method is used. The most important factors affecting rock slope stability are joint angle and spacing. The relationship between average displacement calculated by UDEC-BB and safe factor by shear strength reduction method is researched.

  • PDF

Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods (다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교)

  • Seo, Min-Woo;Oh, Myoung-Hak;Yoon, Hyun-Suk;Park, Jun-Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.73-80
    • /
    • 2006
  • The shear behavior of four different interfaces consisting of four types of geosynthetics was investigated, and both static and dynamic test for the geosynthetic interfaces were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board test was compared with calculated values from large direct shear tests. The comparison results indicated that direct shear tests show high possibility to over-predict the shear strength in the low normal stress range where direct shear tests are not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table test, it was found that the friction angle might be different depending on the test method and normal stresses applied in the research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field with using the geosynthetic materials installed in the site.

Preliminary Analysis of Stabilization of Forest Road Surface Using Geosynthetics (토목섬유를 이용한 임도 노면의 안정성 예비 분석)

  • Lee, Kwan-Hee;Oh, Se-Wook;Ko, Chi-Ung;Kim, Dong-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.51-60
    • /
    • 2015
  • This study conducted shear strength test and plate bearing test to look into the characteristics of bearing capacity using geosynthetics case on forest road surface. The shear strength test showed that the internal friction angle at the time when geosynthetics was used was measured larger on average than that in the unreinforced case. Therefore, using geosynthetics case produced more bearing capacity reinforcement effect. The result from the comparison test of internal friction angle by geosynthetics type revealed that the internal friction angle at the time when geotextile case was used was measured larger. That was attributable to the difference between the area of the total cross section of geotextile made in type of non-woven fabric and its material. Plate bearing test showed that the settlement at the time when geosynthetics was used was measured smaller than that in the unreinforced case. Therefore, using geosynthetics produced more bearing power reinforcement effect. The result from the comparison test showed that geogrid case was measured smaller than geotextile case. Henceforth, It is seemed that it will be necessary to keep studying the reinforcement engineering and process of forest road surface which fits the characteristics and conditions of geosynthetics to prevent forest road demage.

Effect of Textile Care on Physical Properties and Biodegradability of Cellulose Fabrics (관리 방법에 따른 섬유소계 직물의 물리적 특성 변화 및 생분해성 평가)

  • 이혜원;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.173-182
    • /
    • 2001
  • The physical properties and biodegradability of cellulose fabrics, such as cotton and rayon, are expected to vary with textile care. In this study cotton and rayon fabrics were washed repeatedly with detergents, bleaches, or softeners. The changes of physical properties were investigated by measuring retention of breaking strength, shrinkage, handle, and the fiber surface was observed by SEM. The biodegradability of fabrics was also estimated by soil burial test. The results were as follows. Cotton fabrics laundered repeatedly by detergents and bleaches lost virtually no strength. The breaking strength of the rayon fabrics decreased by about 17%∼25% after repeated launderings. Shrinkage in weft direction was much larger than that in warp direction. Bending rigidities of both fabrics decreased remarkably within 10 wash cycles. Shear rigidity in cotton fabrics increased continuously with repeated washing cycles, however, that in rayon fabrics did not show any change as washing went on. Friction coefficient increased in both fabrics after 10 wash cycles, and this is thought to be attributed to the wrinkle, interlocking of hairs, surface damage resulted from repeated washings. In cotton fabrics made of staple yarns, short hairs on the yarn surface entangled together with repeated launderings. This resulted in the continuous increase in % shrinkage, shear rigidity, friction coefficient. Rayon fabrics made of filament yarns, however, did not show this phenomenon. Softener treated fabrics showed the lowest values in bending rigidity, shear rigidity and friction coefficient because the cationic surfactants adsorbed on the fiber surface behaved like lubricants. The biodegradability of fabrics was noticeably affected by the composition of washing solutions. The fabrics washed with detergents and bleaches were decomposed faster than those washed with the others were and the cotton fabrics washed with detergents and softeners hardly degraded. The fabrics soiled with milk were decomposed almost completely and those soiled with Palmitic acid did not degrade greatly.

  • PDF

Behaviour of Beams Without Transverse Reinforcement (전단보강근이 없는 보의 거동)

  • Cho, Soon-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.173-181
    • /
    • 1999
  • To deepen the understanding of shear behaviour in beams without transverse reinforcement, the relative importance of five contributing factors to concrete shear resistance($v_c$), which are i)flexural compression zone, ii)friction at crack faces, iii)dowel action, iv)arch action and recently identified, v)residual tensile stresses across cracks, was explained physically using two analytical methods based on the truss concept. One is called "Modified Compression Field Theory(MCFT)" considering ii) and v) explicitly, and the other "Crack Friction Truss Model(CFTM)" more dominantly ii) in determining concrete resistance. To verify their effectiveness, the predictions using MCFT and CFTM were also made for twenty KAIST beam tests($f'_c$=53.7Mpa), designated more likely to the development of the size effect law based on the fracture mechanics concept. Experimental findings with varying of a/d, longitudinal reinforcement ratios, and obtained from MCFT enabled additional explanations for some phenomena which were difficult to measure in tests. However, MCFT seemed somewhat conservative for beams with higher longitudinal reinforcement, while somewhat unsafe for beams with larger depths. More tests are necessary leading to firm conclusions in these areas.

Development of Failure Criterion of Hot Mix Asphalt Using Triaxial Shear Strength Test (삼축압축시험을 이용한 아스팔트 혼합물의 파괴기준 개발)

  • Kim, Seong Kyum;Lee, Kwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.947-954
    • /
    • 2014
  • In general, Fracture of the material is not occurring of the maximum normal stress or the maximum shear stress failure in the state. Maximum normal stress and maximum shear stress in the state of Critical coupling from being destroyed based on the Mohr-Coulomb theory. Couple of different mixtures, including permeable asphalt pavement, SMA and dense-graded asphalt mixture, were used for compression triaxial test at $45^{\circ}C$ and $60^{\circ}C$. Mohr-Coulomb theory to the analysis of compression triaxial test result of the internal friction angle $38.9^{\circ}{\sim}46.9^{\circ}$ measured somewhat irregularly, but in the case of cohesion, depending on whether the temperature and immersion of the specimen appeared differently. In addition, Indirect tensile test and compression triaxial test of the asphalt mixture to determine the correlation between compression triaxial test results assessed as cohesion and internal friction angle calculated using the theoretical Indirect tensile strength and measured indirectly tensile strength were analyzed. The Measured & Predicted IDT St values tended to be proportional.

Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures

  • Hong, Won-Taek;Byun, Yong-Hoon;Kim, Sang Yeob;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.197-216
    • /
    • 2016
  • The increased speed of a train causes increased loads that act on the track substructures. To ensure the safety of the track substructures, proper maintenance and repair are necessary based on an accurate characterization of strength and stiffness. The objective of this study is to develop and apply a cone penetrometer incorporated with the dynamic cone penetration method (CPD) for investigating track substructures. The CPD consists of an outer rod for dynamic penetration in the ballast layer and an inner rod with load cells for static penetration in the subgrade. Additionally, an energy-monitoring module composed of strain gauges and an accelerometer is connected to the head of the outer rod to measure the dynamic responses during the dynamic penetration. Moreover, eight strain gauges are installed in the load cells for static penetration to measure the cone tip resistance and the friction resistance during static penetration. To investigate the applicability of the developed CPD, laboratory and field tests are performed. The results of the CPD tests, i.e., profiles of the corrected dynamic cone penetration index (CDI), profiles of the cone tip and friction resistances, and the friction ratio are obtained at high resolution. Moreover, the maximum shear modulus of the subgrade is estimated using the relationships between the static penetration resistances and the maximum shear modulus obtained from the laboratory tests. This study suggests that the CPD test may be a useful method for the characterization of track substructures.

Shear Properties of Bottom Ash-Crumb Rubber Mixture Reinforced with Waste Fishing Net Using Triaxial Test (삼축압축시험에 의한 폐어망 보강 저회-폐타이어 혼합토의 전단특성)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.81-91
    • /
    • 2013
  • This paper investigates the shear properties of bottom ash-crumb rubber mixture reinforced with waste fishing net. Mixtures used in this experiment were prepared at 2 different percentages of crumb rubber (2 mm~10 mm) content (i.e., 0%, 50% by weight of the dry bottom ash). In this study several series of triaxial tests were carried out on the six different specimens : unreinforced bottom ash, reinforced bottom ash with 1 or 2 layers, unreinforced mixture, reinforced mixture with 1 or 2 layers. The experimental results indicated that the shear properties of bottom ash-crumb rubber mixture were strongly influenced by reinforcing layer of waste fishing net and crumb rubber addition. It is shown that the internal friction angle of bottom ash-crumb rubber mixture decrease with addition of crumb rubber due to the compression properties of crumb rubber. However, the internal friction angle of the mixture increased with an increase in reinforcing layer due to interlocking effect and friction between mixture and waste fishing net.

An analytical analysis of a single axially-loaded pile using a nonlinear softening model

  • Wu, Yue-dong;Liu, Jian;Chen, Rui
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.769-781
    • /
    • 2015
  • The skin friction of a pile foundation is important and essential for its design and analysis. More attention has been given to the softening behaviour of skin friction of a pile. In this study, to investigate the load-transfer mechanism in such a case, an analytical solution using a nonlinear softening model was derived. Subsequently, a load test on the pile was performed to verify the newly developed analytical solution. The comparison between the analytical solution and test results showed a good agreement in terms of the axial force of the pile and the stress-strain relationship of the pile-soil interface. The softening behaviour of the skin friction can be simulated well when the pile is subjected to large loads; however, such behaviour is generally ignored by most existing analytical solutions. Finally, the effects of the initial shear modulus and the ratio of the residual skin friction to peak skin friction on the load-settlement curve of a pile were investigated by a parametric analysis.