• Title/Summary/Keyword: shear velocities

Search Result 272, Processing Time 0.028 seconds

Development of Torsional Shear Testing System to Measure P-wave Velocity, S-wave Velocity and Pore Water Pressure Buildup on Fully and Partially Saturated Sands (포화 및 부분 포화 사질토의 Vp와 Vs 속도 및 과잉간극수압 측정을 위한 비틂전단 시험기의 개발)

  • Kim, Dong-Soo;Lee, Sei-Hyun;Choo, Yun-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.55-66
    • /
    • 2006
  • Laboratory tests have revealed that the liquefaction resistance of sands depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The velocity of compression waves(i.e. P-waves), which have been known to be influenced largely by the degree of saturation and can be measured conveniently in the field, appears as an indicator of saturation. In this paper, the Stokoe type torsional shear(TS) testing equipment is modified to saturate the specimen and measure the velocities of P-wave and S-wave and pore pressure buildup. The velocities of P-wave and S-wave for Toyoura sand from Japan is measured and compared at the various B-value (degree of saturation) which are partially saturated to fully saturated conditions. Additionally, the variation of the pore water pressure induced during undrained TS tests at the various B-value is measured and analyzed.

  • PDF

Estimation of Void Ratio by Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산정 기법 연구)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Jeong, Hun-Jun;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.198-207
    • /
    • 2010
  • Many methods and techniques have been developed to obtain the accurate design parameters in soft soils. In particular, several researchers suggest the techniques to get the void ratio for understanding the soil behavior. The objective of this paper verifies the accuracy of the proposed analytical solution for determining the void ratio based on the elastic wave velocities. The paper covers the theories of Wood, Biot, Gassmann and Foti proposed chronological order. The total theory represents the wave propagation in fully saturated medium. To verify the proposed analytical solution, the laboratory and field tests are carried out. After measuring the elastic wave, the void ratios are assessed using proposed equation. The volume based void ratios are also obtained for comparing with the estimated value by several equations. The values estimated by volume, Gassmann and Biot are show good similarity. However, the void ratios based on Wood and Foti methods have a slightly different trend. This study suggests that the theories of Biot and Gassmann may be a useful equation for assessing the void ratio using elastic wave velocities in the field.

  • PDF

Cosmology with peculiar velocity surveys

  • Qin, Fei
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.43.5-44
    • /
    • 2021
  • In the local Universe, the gravitational effects of mass density fluctuations exert perturbations on galaxies' redshifts on top of Hubble's Law, called 'peculiar velocities'. These peculiar velocities provide an excellent way to test the cosmological model in the nearby Universe. In this talk, we present new cosmological constraints using peculiar velocities measured with the 2MASS Tully-Fisher survey (2MTF), 6dFGS peculiar-velocity survey (6dFGSv), the Cosmicflows-3 and Cosmicflows-4TF compilation. Firstly, the dipole and the quadrupole of the peculiar velocity field, commonly named 'bulk flow' and 'shear' respectively, enable us to test whether our cosmological model accurately describes the motion of galaxies in the nearby Universe. We develop and use a new estimators that accurately preserves the error distribution of the measurements to measure these moments. In all cases, our results are consistent with the predictions of the Λ cold dark matter model. Additionally, measurements of the growth rate of structure, fσ8 in the low-redshift Universe allow us to test different gravitational models. We developed a new estimator of the "momentum" (density weighted peculiar velocity) power spectrum and use joint measurements of the galaxy density and momentum power spectra to place new constraints on the growth rate of structure from the combined 2MTF and 6dFGSv data. We recover a constraint of fσ8=0.404+0.082-0.081 at an effective redshift zeff=0.03. This measurement is also fully consistent with the expectations of General Relativity and the Λ Cold Dark Matter cosmological model.

  • PDF

Pier Scour Prediction in Pressure Flow

  • Choi, Gye-Woon;Ahn, Sang-Jin;Kim, Jong-Sup
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.23-37
    • /
    • 1995
  • In this experimental paper, the maximum scour depth at pier was student. The model of the pier of San Gye bridge in the Bocheong stream was set for the experimental studies. Several model verification processes were conducted through the roughness comparisons between model and prototype, pursuing scour depth variations with time depending upon channel bed variation, the comparison of the ratios between falling velocities and shear velocities in the model and prototype, and the comparison of pier scour depths between experimental data and field measuring data. The experiments were conducted in the free flow conditions and pressure flow conditions. The maximum scour depth at piers in the pressure flow conditions is almost twice as much as compared to the free flow conditions. Also, the maximum scour depth variations are indicated in the figures based on the Froude numbers, opening ratios, water depths and approaching angles in the free surface flow conditions.

  • PDF

Analysis of Geometric Parameters for Fully Developed Laminar Flow Between Cylinders Arranged in Regular Array (정규배열내의 실린더 사이에서의 완전발달된 층류 유동의 기하학적 계수의 해석)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1037-1049
    • /
    • 2001
  • Considerable interest has evolved in the flow of non-Newtonian fluids in channels of noncircular cross section in compact heat exchanges. Analytical solution was developed for prediction of the flow rate and maximum velocity in steady laminar flow of any incompressible, time-independent non-Newtonian fluids in straight closed and open channels of arbitrary, but axially unchanging cross section. The geometric parameters and function of shear describing the behavior of the fluid model were evaluated for fluid flow among a bundle of rods arranged in triangular and square array. Numerical values of dimensionless maximum velocities, mean velocities, pressure-drop-flow parameters and friction factors were evaluated as a function of porosity and pitch-to-radius ratio.

  • PDF

A Predictive Model for the Tones Generated from Aerodynamically Excited Helmholtz Resonators (공기 역학적으로 가진 되는 헬름홀쯔 공명기에서 발생하는 소음에 관한 예측모델)

  • 국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.478-485
    • /
    • 1998
  • The interior of open cavities exposed to a grazing flow is known to experience, strong periodic pressure, oscillations sustained for a wide range of flow velocities. In this study, an original approach was followed to develop a describing function model for the flow-excitation mechanism, governed by the shedding of discrete vortices within the shear layer over the orifice. A feedback loop analysis was performed to predict the frequency and the amplitude of the interior pressure fluctuations. Furthermore, a limit cycle stability analysis based on the extended Nyquist Stability criterion allowed the predictions of the onset and termination velocities for various modes. The analytical model was verified experimentally.

  • PDF

Experimental Study on Measuring the Intermittency in the Transitional Boundary Layer (천이경계층에서의 간헐도 측정에 관한 실험적 연구)

  • 임효재;안재용;백성구;정명균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • An experimental study was performed to investigate the turbulence intermittency measuring methods across the boundary layer in the transition region. A single type hot-wire probe was used to measure instantaneous streamwise velocities in laminar, transitional and turbulent boundary layer To estimate wall shear stresses on the flat plate, near wall mean velocities are applied to the principle of CPM. Distribution of intermittency factor is obtained by dual-slope method and compared to the results of four methods,$\'{u},\;\{U}$, TERA and M-TERA method. In these methods, M-TERA shows a good agreement in the near wall region. However, the result of M-TERA method shows that intermittency factor is underestimated in the outer part and outside of the boundary layer and the dimensional constant of M-TERA method should be changed appropriately depending on measuring point.

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

Atomization Characteristics of shear coaxial twin fluid injector (동축형 인젝터의 미립화 특성)

  • Han, J.S.;Kang, G.T.;Kim, Y.;Kim, S.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF

A Methodology for Compaction Control of Crushed-Rock-Soil-Fills (암버럭-토사 성토 노반의 다짐 관리 방안)

  • Park, Chul-Soo;Hong, Young-Pyo;Joh, Sung-Ho;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.607-616
    • /
    • 2006
  • More strict construction control of railway roadbeds is demanded in high speed railway system because of heavier repeated dynamic loading than conventional railways. The aim of this study is to propose a compaction control methodology of crushed-rock-soil-fills including as large particles as $200\sim300mm$ in diameter, which are easily encountered in high speed railway roadbed. Field tensity evaluation and in turn compaction control of such crushed-rock-soil-fills are almost impossible by conventional methods such as in-situ density measurements or plate loading tests. The proposed method consists of shear wave measurements of compaction specimens in laboratory and in-situ measurements of fills. In other words, compaction control can be carried out by comparing laboratory and field shear wave velocities using as a compaction control parameter. The proposed method was implemented at a soil site in the beginning and will be expanded to crushed-rock-soil-fills in future. One interesting result is that similar relationship of shear wave velocity and water content was obtained as that of density and water content with the maximum value at the optimum moisture content.

  • PDF