• 제목/요약/키워드: shear velocities

검색결과 272건 처리시간 0.042초

반 무한 복합체의 Rayleigh 표면파에 대한 이방성비의 영향 (Effect of Anisotropic Ratio for Rayleigh Wave of a Half-Infinite Composite Material)

  • 백운철;황재석;송용태
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.502-509
    • /
    • 2001
  • In this paper, when stress waves are propagated along the reinforced direction of the composite, the characteristic equation of Rayleigh wave is derived. The relationships between velocities of stress waves and Rayleigh wave are studied for anisotropic ratios(E(sub)11/E(sub)12 or E(sub)22/E(sub)11). The increments of anisotropic ratios is made by using known material properties and being constant of basic properties. When the anisotropic ratios are increased, Rayleigh wave velocities to the shear wave velocities are almost equal to 1 with any anisotropic ratios. Rayleigh wave velocities to the longitudinal wave velocities and Shear wave velocities ratio to the longitudinal wave velocities are almost identical each other, they are between 0.12 and 0.21. When the anisotropic ration is very high, that is, E(sub)11/E(sub)22=46.88, Rayleigh wave velocities and the shear wave velocities are almost constant with Poissons ratio, longitudinal wave velocities are very slowly increased with the increments of Poissons ratios. When E(sub)11(elastic modulus of the reinforced direction)and ν(sub)12 are constant, Rayleigh wave velocities and the shear wave velocities are steeply decreased with the increments of anisotropic ratios and the velocities of longitudinal wave are almost constant with them. When E(sub)22(elastic modulus of the normal direction to the fiber) and ν(sub)12 are constant, Rayeigh wave velocities is slowly increased with the increments of anisotropic ratios, the shear wave velocities are almost constant with them, the longitudinal wave velocities are steeply increased with them.

지반주기를 고려한 다층지반의 평균전단파속도 추정 방법 평가 (Evaluation of Average Shear-wave Velocity Estimation Methods of Multi-layered Strata Considering Site Period)

  • 김동관
    • 한국지진공학회논문집
    • /
    • 제23권3호
    • /
    • pp.191-199
    • /
    • 2019
  • To calculate proper seismic design load and seismic design category, the exact site class for construction site is required. At present, the average shear-wave velocity for multi-layer soil deposits is calculated by the sum of shear-wave velocities without considering of vertical relationship of the strata. In this study, the transfer function for the multi-layered soil deposits was reviewed on the basis of the wave propagation theory. Also, the transfer function was accurately verified by the finite element model and the eigenvalue analysis. Three methods for site period estimation were evaluated. The sum of shear-wave velocities underestimated the average shear-wave velocities of 526 strata with large deviations. The equation of Mexican code overestimated the average shear-wave velocities. The equation of Japanese code well estimated the average shear-wave velocities with small deviation.

소금 고결화에 따른 강성 특성 (Stiffness Characteristics according to Salt Cementation)

  • 엄용훈;쭝꽝훙;유정동;변용훈;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.255-264
    • /
    • 2009
  • Soils containing vanishing materials lead changes in the microstructure of particulate media due to water inflow. Thus, dissolution renders some local unstability. As the moisture contents decease, the component of the vanished materials may affects on the cementation of paniculate materials. This cementation phenomenon has a huge influence on the stiffness, strength and stability under lower stress level. The goal of this study is to introduce the cementation effects on a compressional wave velocity, a shear wave velocity, and the resonant frequency of shear waves. The glass bead and salt water with different mole contents are used. Test results show that the changes of shear and compressional wave velocities consist of three stages. In the first region, compressional wave velocities increase and shear wave velocities decrease with a decreases in reducing water contents from 100% to 90~95%. In the second region, shear and compressional wave velocities become stable at 90~95% to 10% of the water contents. In the third region, shear and compressional wave velocities increases dramatically with a decrease in the water content due to the capillary force and cementation of salt. Furthermore, the resonant frequency of the shear waves shows similar phenomenon. Specimens prepared by glass beads and salt water are proved to be able to provide a meaningful insight in under structural behaviors of the cementation.

  • PDF

전단파를 이용한 연약지반의 압밀도 평가기법 적용성 연구 (Feasibility study on the Evaluation of the degree of consolidation using shear waves for soft clay deposits)

  • 윤준웅;김종태;이진선;김동수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.442-451
    • /
    • 2008
  • The evaluation of field degree of consolidation on soft clays has been an important problem in geotechnical areas. Monitoring either settlements or pore water pressures has been widely applied in the filed, but occasionally they have some problems. This study addresses the suggestion and application of another method for evaluating the degree of consolidation using shear wave velocities. A research site where soft clay layers were consolidated by surcharging loads was chosen. Laboratory tests were performed to determine the relation between shear wave velocity and effective stress. Field seismic tests were conducted several times during the consolidation of the clay layers. The tests results show that the shear wave velocity increased significantly as clays consolidated. The shear wave velocities at each field stress states were derived from the laboratory results and the degree of consolidation was evaluated by comparing the shear wave velocities obtained by laboratory and field seismic methods. In most stress states, the degree of consolidation evaluated using the shear wave velocity matched well with that obtained from field settlement record, showing the potential of applying the method using shear waves in the evaluation of field degree of consolidation on soft clay deposits.

  • PDF

응력유도 및 고유 이방성에 따른 전단파 속도 특성 (Characteristics of Shear Wave Velocity as Stress-Induced and Inherent Anisoptopies)

  • 이창호;이종섭;조태현;이정학;김상호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.137-146
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomenons are negligible. However, the terms of effective stresses are divided to the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by parameters and exponents that are experimentally determined. The exponents are controlled contact effects of particulate materials(sizes, shapes, and structures of particles) and the parameters are changed contact behaviors between particles, material properties of particles, and type of packing(i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies through bender elements. Results show the shear wave velocities depends on the stress-induced anisotropy for round particles. Furthermore the shear wave velocity is dependent on particle alignment under the constant effective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully calculated and used for the design and construction of geotechnical structures.

  • PDF

실트질 세립토의 전단파속도와 비배수 전단강도 및 밀도의 상관관계 (Relationship between Shear Wave Velocity, Undrained Shear Strength and Density of Normally Consolidated Silt)

  • 박동선;오상훈;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.318-326
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of soft soils. To expand its use to estimate undrained shear strength and density, correlations between those and shear wave velocity were being attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a soft ground site near Incheon, Korea. Also, undisturbed samples were obtained and shear wave velocities of the samples were measured as well as undrained shear strength, using triaxial compression test and bender elements. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

  • PDF

비틀림 유도파를 이용한 근지표면 전단속도 규명 (Identification of the Shear Velocities of Near Surface Soils Using Torsional Guided Waves)

  • 박경조;오형수
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.771-776
    • /
    • 2012
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear(S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fumdamental T(0,1) mode that propagates along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using T(0,1) mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities as a function of depths are formulated using power law curves.

온도와 포화도의 변화에 의한 표면장력이 전단파 속도에 미치는 영향 (The Effect of Surface Tension on Shear Wave Velocities according to Changes of Temperature and Degree of Saturation)

  • 박정희;강민구;서선영;이종섭
    • 대한토목학회논문집
    • /
    • 제32권6C호
    • /
    • pp.285-293
    • /
    • 2012
  • 표면장력에 의한 겉보기 점착력은 적절한 함수비를 가지고 있는 흙의 경우 생성되며 지반의 강도를 증가시킨다. 본 연구의 목적은 온도에 따라 변화하는 표면장력이 전단파 속도에 미치는 영향을 파악하는 것이다. 표면장력의 발생 유무를 조절하기 위하여 모래-실트 혼합토를 이용하여 포화도가 다른 아홉 가지의 시료 (0%, 2.5%, 5%, 10%, 20%, 40%, 60%, 80%, 100%)를 조성하였다. 전단파 속도를 측정하기 위해 나일론 재질의 셀을 제작하였으며 전단파 트랜스듀서인 벤더 엘리먼트를 크로스 홀 형상으로 부착하였다. 시료의 온도가 $15^{\circ}C$에서 $1^{\circ}C$까지 변화하는 동안 포화도가 다른 각 시료의 전단파 신호를 연속적으로 측정하였다. 실험결과, 포화도 0%인 시료와 포화도 100%인 시료는 온도변화에 의한 전단파 속도 변화가 미비하였으나, 표면장력이 발생하기에 적절한 포화도를 가진 시료는 온도가 감소함에 따라 전단파 속도는 증가하였다. 또한 완전 포화된 시료를 $70^{\circ}C$에서 건조시키면서 포화도에 따른 전단파 속도를 측정한 시료의 경우, $15^{\circ}C$에서 측정된 시료의 전단파 속도보다 더 낮은 전단파 속도가 측정되었다. 본 연구는 특정한 포화도에서 온도변화에 따라 전단파 속도가 변화하는 원인을 실험을 통해 분석하였으며, 미소변형구간에서의 전단탄성계수 측정과 같은 실내 및 현장실험 시, 온도를 동시에 평가해야 함을 보여준다.

수심평균 유동 모형의 매개변수와 내부 경계조건에 따른 유속구조 및 전단력 분석 (Analysis of Velocity Structures and Shear Stresses by Parameters and Internal Boundary Conditions of Depth-averaged Flow Model)

  • 송창근;우인성;오태근
    • 한국안전학회지
    • /
    • 제28권5호
    • /
    • pp.54-60
    • /
    • 2013
  • In this study, a finite element model based on the SU/PG scheme was developed to solve shallow-water equations and the influences of parameters and internal boundary conditions on depth-averaged flow behavior were investigated. To analyze the effect of roughness coefficient and eddy viscosity on flow characteristics, the developed model was applied to rectangular meandering channel with two bends, and transverse velocities and water depth distributions were examined. As the roughness coefficient adjacent to wall increased, the velocities near the wall decreased, and the reduced velocities were compensated by the expanding mid-channel velocities. In addition, the flow characteristics around a circular cylinder were analyzed by varying the internal boundary conditions as free slip and no slip. The assignment of slip condition changed the velocity distribution on the cylinder surface and reduced the magnitude of the shear stress up to one third.

벤더 엘리먼트 센서를 이용한 선행 재하공법 현장의 간극비 변화 추정 (Estimating Void Ratio Changes of a Pre-loading Site Using Bender Elements Sensors)

  • 김학성;정영훈;김병철;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1110-1116
    • /
    • 2010
  • Void ratios are one of the key parameters for exact calculation of settlement of soft groundse. In the study, shear wave velocities of a soft ground were used to measure the field void ratio using bender elements sensors. The bender-element probes were installed in situ at the depths of 3, 5 and 8m on a pre-loading site near Incheon, Korea. During 90 days after installation, the changes of shear wave velocity and ground surface settlement were measured. The field void ratio was estimated from measured shear wave velocities. The void ratio estimated by the shear wave velocity measured by bender elements agrees well with the measured values in the field.

  • PDF