• Title/Summary/Keyword: shear velocities

Search Result 272, Processing Time 0.023 seconds

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (I) - Problem Statements of the Current Seismic Design Code (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (I) - 국내 내진설계기준의 문제점 분석)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.39-50
    • /
    • 2006
  • Site response analyses were peformed based on equivalent linear technique using the shear wave velocity profiles of 162 sites collected around the Korean Peninsula. The she characteristics, particularly the shear wave velocities and the depth to bedrock, are compared to those in the western United States. The site coefficients of short period $(F_a)$ and the long period $(F_v)$ obtained from this study were significantly different compared to 1997 Uniform Building Code (1997 UBC). $F_a$ underestimated the motion in shot period ranges and $F_v$ overestimated the motion in mid period ranges in Korean seismic guideline. It is found that the existing Korean seismic design code were is required to be modified considering geological site conditions in Korea for the reliable estimation of sue amplification. Problems of the current seismic design code were dicussed in this paper and the development of site classification method and modification of desing response spectra were discussed in the companion papers(II-Development of Site Classification System and III-Modification of Dosing Response Specra).

Geotechnical Characteristics of the Ulleung Basin Sediment, East Sea (1) - Cosolidation and Shear Waves Velocity (동해 울릉분지 심해토의 지반공학적 특성(1) - 압밀 특성, 전단파 특성에 관한 연구)

  • Kim, Youngmoon;Lee, Jongsub;Lee, Jooyong;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2013
  • A drilling exploration in deep sea is being processed to develop new energy resource in the world. In 2007, the presence of the gas hydrate had been confirmed during the UBGH1 (Ulleung Basin Gas Hydrate Expedition 1) in the Ulleung Basin. Geotechnical properties of the deep marine sediment are important factors for assessing the safety of gas production facility and productivity from the hydrate bearing sediment. In this study, comprehensive laboratory tests are conducted to investigate the geotechnical engineering characteristics of the deep marine sediments recovered from the hydrate occurrence regions during the UBGH2 (Ulleung Basin Gas Hydrate Expedition 2) in the Ulleung Basin, East Sea, Korea. The index properties of the specimens including the specific gravity, atterberg limits, specific surface, and particle size distribution are measured, and these are compared to the results reported by previous studies. A zero-lateral strain cell, which houses bender elements, is used to determine stress-dependant characteristics and shear wave velocities with the vertical effective stresses. Furthermore, the hydraulic conductivity is calculated based on the consolidation test results.

Surface Wave Method: Focused on Active Method (표면파 탐사: 능동 탐사법을 중심으로)

  • Kim, Bitnarae;Cho, Ahyun;Cho, Sung Oh;Nam, Myung Jin;Pyun, Sukjoon;Hayashi, Koich
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.210-224
    • /
    • 2019
  • Surface wave (SW) surveys, which have been applied to numerous application fields ranging from micro-scale ultrasonic analysis to geological scale analysis, are widely used to monitor near-surface stability. The survey method is basically made through analysis on dispersion of SW propagating along the earth surface, in order to delineate shear velocity structure of subsurface. SW survey data are inverted with assuming one-dimensional (1D) layered-earth in order to recover shear wave velocities of each layer, after being analyzed to make the dispersion curve that shows phase velocity of SW with respect to frequency. This study reviews surface wave surveys with explaining the basic theory including the characteristics of dispersion and the procedure of general data processing. Even though surface wave surveys can be categorized into active and passive methods, this paper focuses only on active surface wave methods which includes continuous SW (CSW), spectral analysis of SW (SASW) and multichannel analysis of SW (MASW). Passive method will be reviewed in the subsequent paper.

Stability Evaluation on Particle Size Characteristics of Bed Materials at High-Velocity Flow (고유속 흐름에서 하상재료의 입도특성에 따른 안정성 평가연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.365-376
    • /
    • 2021
  • In general, domestic streams and rivers are composed of alluvial rivers consisting of sand and gravel beds. These rivers can cause erosion and riverbed changes due to sudden changes in flow rates, such as floods, torrential rains, and heavy rains. In particular, there are various types of erosion, such as contraction erosion caused by changes in river shape, or local erosion occurring around obstacles such as piers, abutments or embankments. In addition, river changes can occur in various forms, such as static or dynamic periods, due to limitations such as flow rate, velocity, and shear stress. This study focused on the erosions of embankments directly related to human casualties among various river structures, and evaluated limit velocities and critical shear stress in order to identify changes in strength of natural materials by identifying the characteristics of natural hoan materials and resistance to erosions. In particular, the limitations of materials according to the type of materials in the river, characteristics of particles, and size of particles were studied using Soil loss, which is a change in the volume of the revetment material, and it is intended to be used as basic data for river design and restoration.

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

Analysis and Suggestion of Estimation Equation for Sedimentation in Square Manholes with Straight Path (사각형 중간맨홀에서의 유사 퇴적 분석 및 산정식 제안)

  • Kim, Jung-Soo;Song Ju-Il;Rim Chang-Soo;Yoon, Sei-Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.177-189
    • /
    • 2012
  • Sediment load deposited in sewers and manholes reduces not only the capacity of pipes but also the efficiency of the whole sewer system. This causes the inundations of the low places and overflows at manholes, Moreover, sulfides and bad odor can occur due to deposited sediment with organic loads in manholes. Movements of sediment load in manholes are complicated depending on manhole size, location, inside structure, sediment load type, and time. Therefore, it is necessary to understand the movements of sediment load in manholes by experiments. In this study, experiments were implemented by a square manhole with straight path to measure deposited sedimentation quantity. The experimental apparatus was consisted of a high water tank, an upstream tank, test pipes, a sediment supplier, a manhole, and a downstream tank to measure the experimental discharge. The quantity of deposited sediment load was measured by different conditions, such as the inflow condition of sediment(continuous and certain period), the amount of inflow sediment, discharge, and the type of sediment. Jumoonjin sand(S=2.63, D50=0.55mm), general sand(GS, S=2.65, D50=1.83mm) and anthracite (S=1.45, D50=0.80mm) were employed for the experiment. The velocities in inflow pipe were 0.45 m/s, 0.67 m/s, and 0.9 m/s. Sediment load movement and sedimentation quantity in manhole were influenced by many factors such as velocity, shear stress, viscosity, amount of sediment, sediment size, and specific gravity. Suggested regression equations can estimated the quantity of deposited sediment in the straight path square manholes. The connoted equations that were evaluated through the experimental study have velocity range from 0.45 to 0.9m/sec. The study results illustrates that appropriation of design velocity ragne between 1.0 and 2.0m/sec could implement to maintain and manage manholes.

Statistical Comparison of Gravity Wave Characteristics Obtained from Airglow All-Sky Observation at Mt. Bohyun, Korea and Shigaraki, Japan

  • Yang, Tae-Yong;Kwak, Young-Sil;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • Previously, all-sky airglow images observed at Shigaraki ($34.9^{\circ}N$, $136.1^{\circ}E$), Japan, during 2004 and 2005 were analyzed in relation to those observed at Mt. Bohyun ($36.2^{\circ}N$, $128.9^{\circ}E$) for a comparison of their gravity wave characteristics (Kim et al. 2010). By applying the same selection criteria of waves and cloud coverages as in the case of Mt. Bohyun all-sky images, we derived apparent wavelengths, periods, phase velocities, and monthly occurrence rates of gravity waves at Shigaraki in this study. The distributions of wavelengths, periods, and speeds derived for Shigaraki were found to be roughly similar to those for Mt. Bohyun. However, the overall occurrence rates of gravity waves at Shigaraki were 36% and 34% for OI 557.7 nm and OH Meinel band airglow layers, respectively, which were significantly higher than those at Mt. Bohyun. The monthly occurrence rates did not show minima near equinox months, unlike those for Mt. Bohyun. Furthermore, the seasonal preferential directions that were clearly apparent for Mt. Bohyun were not seen in the wave propagation trends for Shigaraki. These differences between the two sites imply different origins of the gravity waves near the Korean peninsula and the Japanese islands. The gravity waves over the Japanese islands may originate from sources at various altitudes; therefore, wind filtering may not be effective in causing any seasonal preferential directions in the waves in the airglow layers. Our analysis of the Shigaraki data supports recent theoretical studies, according to which gravity waves can be generated from in situ sources, such as mesosphere wind shear or secondary wave formation, in the mesosphere.

The Effects of Velocity and Concentration in the Oxidizer of Heptane Pool Fires on the Flame Stability (헵탄 풀화재 화염안정성에 관한 산화제 유속 및 농도 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • Flame flickering occurs mainly because of the buoyancy force for pool fires under ambient air. The cup-burner flame was used for experimental investigation of the effect of the oxidizer velocity on the gravitational instability. The results showed that the flickering frequency decreased with increasing oxidizer velocity. The frequency-buoyancy relation with nondimensional variables coincided with that of the buoyant flume and pool fires when the characteristic velocity was defined as the difference between the fuel and oxidizer velocities, which implies that the origin of the gravitational instability is the Kelvin-Helmholtz instability in the shear layer. The effect of the oxidizer composition on the instability was also examined through nitrogen dilution in the oxidizer stream. As the concentration of inert gas increased, the length of the blue flame increased and lift-off behavior was observed. The oscillation frequency was independent of the dilution ratio, but was related to the local flame structure.

Measurement of an Unsteady Boundary Layer of an Oscillating Airfoil at a Low Reynolds Number (저 레이놀즈수에서 진동하는 에어포일의 비정상 경계층 측정)

  • Kim, Dong-Ha;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.9-17
    • /
    • 2006
  • An experimental study was carried out to examine the behavior of the unsteady boundary layer. An NACA 0012 airfoil with aspect ratio of 2.7 was set vertically in a test section, which is sinusoidally pitched about the quarter chord. The oscillating amplitude is from -6$^{\circ}$ to +6$^{\circ}$ and the mean angle of attack is 0$^{\circ}$. Surface mounted probes (Glue-on probes) were employed to measure the surface flow of the boundary layer. Measurements were made at free-stream velocities of 1.98, 2.83, and 4.03m/s, and the corresponding Reynolds numbers based on the chord length were 2.3$\times$104, 3.3$\times$104 and 4.8$\times$104, respectively. The reduced frequency is fixed as 0.1 in all cases. The results show that the surface position of minimum shear stress and of boundary layer break-down can be discerned in the Reynolds number between 2.3$\times$104 and 3.3$\times$104.

Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission (습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구)

  • Kim, WooJung;Lee, SangHo;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.