DOI QR코드

DOI QR Code

Surface Wave Method: Focused on Active Method

표면파 탐사: 능동 탐사법을 중심으로

  • Kim, Bitnarae (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Cho, Ahyun (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Cho, Sung Oh (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Nam, Myung Jin (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Pyun, Sukjoon (Department of Energy Resources Engineering, Inha University) ;
  • Hayashi, Koich (Geometrics)
  • 김빛나래 (세종대학교 에너지자원공학과) ;
  • 조아현 (세종대학교 에너지자원공학과) ;
  • 조성오 (세종대학교 에너지자원공학과) ;
  • 남명진 (세종대학교 에너지자원공학과) ;
  • 편석준 (인하대학교 에너지자원공학과) ;
  • Received : 2019.06.24
  • Accepted : 2019.10.29
  • Published : 2019.11.30

Abstract

Surface wave (SW) surveys, which have been applied to numerous application fields ranging from micro-scale ultrasonic analysis to geological scale analysis, are widely used to monitor near-surface stability. The survey method is basically made through analysis on dispersion of SW propagating along the earth surface, in order to delineate shear velocity structure of subsurface. SW survey data are inverted with assuming one-dimensional (1D) layered-earth in order to recover shear wave velocities of each layer, after being analyzed to make the dispersion curve that shows phase velocity of SW with respect to frequency. This study reviews surface wave surveys with explaining the basic theory including the characteristics of dispersion and the procedure of general data processing. Even though surface wave surveys can be categorized into active and passive methods, this paper focuses only on active surface wave methods which includes continuous SW (CSW), spectral analysis of SW (SASW) and multichannel analysis of SW (MASW). Passive method will be reviewed in the subsequent paper.

표면파 탐사는 매우 작은 규모의 초음파 분석부터 지질공학 규모의 분석까지 다양한 분야에서 활용하고 있으며, 특히 천부 지질의 지반 안정성을 평가하는 데 활발히 이용되고 있다. 표면파 탐사는 기본적으로 지표면을 따라 전파하는 표면파의 분산 특성에 기초하여 매질의 전단 속도 분포를 파악하는 탐사법이다. 즉, 지하 구조가 1차원 구조라는 가정 하에 탐사를 수행하는 표면파 탐사는, 진동수와 전파 속도의 관계인 분산곡선을 분석하고 1차원적 역산을 통해 층서구조 속도를 계산하게 된다. 이 논문에서는 천부 지질 조사를 위한 표면파 탐사법의 기초적인 이론부터 전반적인 자료처리 과정을 기술보고를 통해 설명하고자 한다. 먼저, 표면파에 대한 개략적인 설명과 가장 큰 특징 중 하나인 분산 특성에 대하여 설명한 후 일반적인 표면파 자료처리 순서에 대하여 설명하였다. 표면파 탐사법은 인공적인 송신원의 유무에 따라 능동 표면파 탐사법과 수동 표면파 탐사법으로 나눌 수 있으나 이 논문에서는 능동 표면파 탐사법인 CSW, SASW, MASW에 대하여 집중적으로 기술하였다. 수동 표면파 탐사법에 대해서는 다음 기술보고에서 다루고자 한다.

Keywords

References

  1. Al-Eqabi, G. I., and Herrmann, R. B., 1993, Ground roll: A potential tool for constraining shallow shear-wave structure, Geophysics, 58(5), 713-719. https://doi.org/10.1190/1.1443455
  2. Ballard, R. L., 1964, Distribution of beach sediment near the Columbia River, University of Washington.
  3. Bergstrom, S. G., and Linderholm, S., 1946, A dynamic method for determining average elastic properties of surface soil layers, Svenska Forskningsinstitutet for Cement och Betong.
  4. Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W., Martin, G. R., Power, M. S., Rinne, E. E., and Seed, R. B., 2000, New site coefficients and site classification system used in recent building seismic code provisions, Earthquake Spectra, 16(1), 41-67. https://doi.org/10.1193/1.1586082
  5. Dorman, J., and Ewing, M., 1962, Numerical inversion of seismic surface wave dispersion data and crust‐mantle structure in the New York‐Pennsylvania area, J. Geophys. Res., 67(13), 5227-5241. https://doi.org/10.1029/JZ067i013p05227
  6. Dorman, J., and Prentiss, D., 1960, Particle amplitude profiles for Rayleigh waves on a heterogeneous earth, J. Geophys. Res., 65(11), 3805-3816. https://doi.org/10.1029/JZ065i011p03805
  7. Dziewonski, A. M., and Hales, A. L., 1972, Numerical analysis of dispersed seismic waves, Seismology: surface waves and earth oscillations, 11, 39-84. https://doi.org/10.1016/B978-0-12-460811-5.50007-6
  8. Ewing, W. M., Jardetzky, W. S., Press, F., and Beiser, A., 1957, Elastic waves in layered media, Physics Today, 10(12), 27.
  9. Exploration instruments, 2019, http://www.expins.com/ (June 1, 2019 Accessed)
  10. Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., and Forbriger, T., 2018, Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project, B. Earthq. Eng., 16(6), 2367-2420. https://doi.org/10.1007/s10518-017-0206-7
  11. Foti, S., Lai, C. G., Rix, G. J., and Strobbia, C., 2014, Surface wave methods for near-surface site characterization, CRC press.
  12. Ganji, V., Gucunski, N., and Nazarian, S., 1998, Automated inversion procedure for spectral analysis of surface waves, J. Geotech. Geoenviron., 124(8), 757-770. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(757)
  13. Gucunski, N., and Krstic, V., 1996, Backcalculation of pavement profiles from spectral-analysis-of-surface-waves test by neural networks using individual receiver spacing approach, Transp. Res. Record, 1526(1), 6-13. https://doi.org/10.1177/0361198196152600102
  14. Heisey, J. S., Stokoe, K. H., and Meyer, A. H., 1982, Moduli of pavement systems from spectral analysis of surface waves, Transp. Res. Record, 852(147), 22-31.
  15. Herrmann, R. B., and Al-Eqabi, G. I., 1991, Surface wave inversion for shear wave velocity, Shear waves in marine sediments, Springer, Dordrecht, 545-556.
  16. Huggins, R., 2004, A report on land streamers: The last geophone you will ever plant, Near-Surface Views, The Near-Surface Geophysics Section of Soc. Expl. Geophys., 11, 1.
  17. Jones, R., 1958, In-situ measurement of the dynamic properties of soil by vibration methods, Geotechnique, 8(1), 1-21. https://doi.org/10.1680/geot.1958.8.1.1
  18. Jones, R., 1962, Surface wave technique for measuring the elastic properties and thickness of roads: theoretical development, Brit. J. Appl. Phys., 13(1), 21. https://doi.org/10.1088/0508-3443/13/1/306
  19. Kanli, A. I., Tildy, P., Pronay, Z., Pinar, A., and Hermann, L., 2006, VS 30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey, Geophys. J. Int., 165(1), 223-235. https://doi.org/10.1111/j.1365-246X.2006.02882.x
  20. Keilis-Borok, V. I., 1989, Recording, identification, and measurement of surface wave parameters, Seismic surface waves in a laterally inhomogeneous Earth, Springer, Dordrecht, 131-182.
  21. Kovach, R. L., 1978, Seismic surface waves and crustal and upper mantle structure, Rev. Geophys., 16(1), 1-13. https://doi.org/10.1029/RG016i001p00001
  22. Lai, C. G., 2000, Spectral analysis of surface waves active methods technical recommendations, Rivista Italiana di Geotecnica, 4.
  23. MASW, 2019, http://www.masw.com/index.html/ (June 1, 2019 Accessed)
  24. Nasseri-Moghaddam, A., 2006, Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium, University of Waterloo.
  25. Park, C. B., and Ryden, N. 2007, Historical overview of the surface wave method, Symposium on the Application of Geophysics to Engineering and Environmental Problems, Soc. Expl. Geophys., 897-909.
  26. Park, C. B., Miller, R. D., and Xia, J., 1998, Ground roll as a tool to image near-surface anomaly, 68th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 874-877.
  27. Park, C. B., Miller, R. D., and Xia, J., 1998, Imaging dispersion curves of surface waves on multi-channel record, 68th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1377-1380.
  28. Park, C. B., Miller, R. D., and Xia, J., 1999, Multichannel analysis of surface waves, Geophysics, 64(3), 800-808. https://doi.org/10.1190/1.1444590
  29. Pelekis, P. C., and Athanasopoulos, G. A., 2011, An overview of surface wave methods and a reliability study of a simplified inversion technique, Soil Dyn. Earthq. Eng., 31(12), 1654-1668. https://doi.org/10.1016/j.soildyn.2011.06.012
  30. Phillips, C., Cascante, G., and Hutchinson, D. J., 2004, Evaluation of horizontal homogeneity of geomaterials with the distance analysis of surface waves, Can. Geotech. J., 41(2), 212-226. https://doi.org/10.1139/t03-085
  31. Rahman, M. Z., Siddiqua, S., and Kamal, A. M., 2016, Shear wave velocity estimation of the near-surface materials of Chittagong City, Bangladesh for seismic site characterization, J. Appl. Geophy., 134, 210-225. https://doi.org/10.1016/j.jappgeo.2016.09.006
  32. Rayleigh, L., 1885, On waves propagated along the plane surface of an elastic solid, P. Lond. Math. Soc., 1(1), 4-11. https://doi.org/10.1112/plms/s1-17.1.4
  33. Richart, F. E., Hall, J. R., and Woods, R. D. 1970, Vibrations of soils and foundations, Prentice-hall, Inc.
  34. Ryden, N., Park, C. B., Ulriksen, P., and Miller, R. D., 2004, Multimodal approach to seismic pavement testing, J. Geotech. Geoenviron., 130(6), 636-645. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(636)
  35. Socco, L. V., and Strobbia, C., 2004, Surface-wave method for near-surface characterization: a tutorial, Near Surf. Geophys., 2(4), 165-185. https://doi.org/10.3997/1873-0604.2004015
  36. Stokoe, K. H., Cox, B. R., Lin, Y. C., Jung, M. J., Menq, F. Y., Bay, J. A., and Wong, I., 2006, Use of intermediate to large vibrators as surface wave sources to evaluate Vs profiles for earthquake studies, 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems.
  37. Van Poel, C. D., 1951, Dynamic testing of road constructions, J. Appl. Chemistry, 1(7), 281-290. https://doi.org/10.1002/jctb.5010010701
  38. Wielandt, E., 1993, Propagation and structural interpretation of non-plane waves, Geophys. J. Int., 113(1), 45-53. https://doi.org/10.1111/j.1365-246X.1993.tb02527.x
  39. Yoon, S. S., 2007, A recommendation of the technique for measurement and analysis of passive surface waves for a reliable dispersion curve, J. Korean Geoenviron. Soc., 23(2), 47-60 (in Korean with English abstract).