• Title/Summary/Keyword: shear value

Search Result 1,533, Processing Time 0.03 seconds

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.

Swimming Motion of Flagellated Bacteria Under Low Shear Flow Conditions (느린 전단흐름에서 편모운동에 의한 대장균의 거동 특성)

  • Ahn, Yong-Tae;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.191-195
    • /
    • 2011
  • The measurement and prediction of bacterial transport of bacteria in aquatic systems is of fundamental importance to a variety of fields such as groundwater bioremediation ascending urinary tract infection. The motility of pathogenic bacteria is, however, often missing when considering pathogen translocation prediction. Previously, it was reported that flagellated E. coli can translate upstream under low shear flow conditions. The upstream swimming of flagellated microorganisms depends on hydrodynamic interaction between cell body and surrounding fluid flow. In this study, we used a breathable microfluidic device to image swimming E. coli at a glass surface under low shear flow condition. The tendency of upstream swimming motion was expressed in terms of 'A' value in parabolic equation ($y=Ax^2+Bx+C$). It was observed that high shear flow rate increased the 'A' value as the shear force acting on bacterium increased. Shorter bacterium turned more tightly into the flow as they swim faster and experience less drag force. The result obtained in this study might be relevant in studying the fate and transport of bacterium under low shear flow environment such as irrigation pipe, water distribution system, and urethral catheter.

A COMPARATIVE STUDY OF SHEAR BOND STRENGTH OF FLOWABLE RESIN ASSOCIATED WITH DENTIN ADHESIVE SYSTEMS WITH THERMOCYCLING EFFECT (상아질접착제와 열순환에 따른 유동성 레진의 전단결합강도 비교 연구)

  • Nam Ki-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.383-393
    • /
    • 2006
  • Statement of problem : Limited research on flowable resin has been undertaken on its application directly on dentin associated with the adhesive systems. Purpose : This study was to evaluate the shear bond strengh and fracture aspect of flowable resin on human dentin with various types of dentin bonding adhesives with thermo cycling effect. Materials and methods: Filtek-Flow(3M ESPE, USA) was used as flowable resin and Eighty human molars were randomly divided into 4 groups : three dentin bonding adhesives (Scotchbond-Multipurpose : 3-step contentional system, One-Step : One-bottle system. Prompt L-Pop : All-in-one, self-etching primer) and 32% etching treatment without bonding adhesive as a control group. For evaluating their durability of bonding, each group was subdivided : storaging in the water at 37$^{\circ}C$(24 hours) and thermocycling (0$^{\circ}C$-55$^{\circ}C$, 30 seconds intervals, 1000 cycle). Shear bond strength tests were performed and resin-dentin interface and fracture mode were observed. Results were analysed by one-way ANOVA and Scheffe's multiple range test. Results and Conclusion : 1. At 0 cycle, the mean shear bond strength of One-Step exhibited the highest value of all groups(p<0.05), and there were no significant differences between Prompt L-Pop and Scotchbond-Multipurpose, Scotchbond-Multipurpose and control(p>0.05). After 1000 thermocycling, One-Step exhibited higher value than other groups(p<0.05), and there were no significant differences among other groups (p>0.05). 2. The shear bond strength of each group was significantly decreased after thermocycling except Scotchbond-Multipurpose (p>0.05). 3. The most common failure mode was adhesive type and mixed type, next in order.

Effect of surface treatments on the shear bond strength of full-contour zirconia layered with porcelain (단일구조 지르코니아(zirconia) 전부도재관의 표면처리에 따른 전장도재와의 전단결합강도)

  • Choi, Byung-Hwan;Kim, Im-Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.121-126
    • /
    • 2013
  • Purpose: The aim of this research was to investigate difference in shear bond strengths of full-contour zirconia layered with porcelain. Methods: Disk-shaped (diameter: 12.0 mm; height: 3.0 mm) zirconia were randomly divided into six groups according to the surface conditioning method to be applied (N=90, n=15 per group): group 1-contol group(ZC); group 2-airborne particle abrasion with $50-{\mu}m\;Al_2O_3(5A)$; group $3-50-{\mu}m\;Al_2O_3$ + liner(5AL), group $4-110-{\mu}m\;Al_2O_3(1A)$; group $5-110-{\mu}m\;Al_2O_3$ + liner(1AL); group 6-liner(LC). On each block, zirconia porcelain was build up according to manufacturer's instructions. All samples were fixed with measuring jigs and shear bond strength were measured with Universal testing machine. Collected data were analyzed using SPSS(Statistical Package for Social Sciences) Win 12.0 statistics program. Results: LC showed the highest value($29.92{\pm}2.55$ MPa) and ZC showed the lowest value($13.22{\pm}1.37$ MPa). Zirconia liner and Alumina oxide groups was significantly higher shear bond strength than control(p<0.05). 5A (without liner $22.18{\pm}2.37$, with liner $22.84{\pm}1.74$ MPa) was higher shear bond strength than $110{\mu}m$ (without liner $20.18{\pm}2.38$, with $20.71{\pm}2.67$). Conclusion: Surface treatments may have advantage in bond strength improvement for full-contour zirconia layered with porcelain.

A STUDY ON THE SHEAR BOND STRENGTHS AND MICROLEAKAGES OF THREE BONDING AGENTS ON DENTIN (상아질 접착제의 전단결합강도와 미세누출에 관한 연구)

  • Kim, Jeong-Ho;Cho, Young-Gon;Moon, Joo-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.680-692
    • /
    • 1997
  • New bonding agent systems have been supplied which operators can simply apply to conditioned tooth surfaces. The purpose of this study was to evaluate the shear bond strengths and the microleakages of three bonding agents and composite resins to dentin. Seventy-five extracted human maxillary and mandibular molar teeth were used in this study. For the shear bond strength test, the entire occlusal dentin surfaces of thirty teeth were exposed with Diamond Wheel Saw and smoothed with Lapping and Polishing Machine (South Bay Technology Co., U.S.A). For the microleakage test, Class V cavities were prepared in the buccal surfaces of fourtyfive teeth. They were randomly assigned into 3 groups according to dentin bonding agents ($Scotchbond^{TM}$ Multi-Purpose plus, ONE-$STEP^{TM}$ and Prime & $Bond^{TM}$)and composite resins (Z-100, $Aelitefil^{TM}$ and TPH $Spectrum^{TM}$) to be used. Bonding agents and composite resins were bonded to exposed dentin surfaces of the tooth crown and to Class V cavities on the buccal surfaces respectively according to manufacturer's directions. The shear bond strengths were measured by universal testing machine($U^{TM}$ AGS-100, Japan). In addition, the degree of micro leakage at the occlusal and gingival margin was examined by 2 % methylene blue and stereomicroscope(Olymous SZH 10, Japan). The results were as follows: 1. The shear bond strength to dentin was the highest value in SBMP-Plus group($16.68{\pm}7.38$ MPa) and the lowest value in Prime & Bond group($11.61{\pm}5.82$ MPa), but there was no significant difference of shear bond strength among three groups. 2. The degree of microleakage at both occlusal and gingival margin was showed the lowest in SBMP-Plus group and the highest in ONE-STEP group. 3. At both occlusal and gingival margin, there was significant difference of microleakage between SBMP-Plus and ONE-STEP/ Prime & Bond groups(p<0.05), but no significant difference of microleakage between ONE-STEP and Prime & Bond group(p>0.05).

  • PDF

Shear bond strength of composite resin to titanium according to various surface treatments

  • Lee, Seung-Yun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • STATEMENT OF PROBLEM. When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE. The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS. The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera$^{TM}$, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at $25^{\circ}C$ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-$5^{(R)}$, United Calibration, USA). These values were statistically analyzed. RESULTS. 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION. Within the limitations of this study, all methods of surface treatment used in this study are clinically available.

Design Strength of Coupled Shear Wall System according to Variation of Strength and Stiffness of Coupled Shear Wall (병렬전단벽의 강도와 강성이 커플링보의 설계내력에 미치는 영향)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.743-750
    • /
    • 2016
  • In this research, the effects of the strength and stiffness of shear walls on the design strength of coupling beams are studied in the shear wall-coupling beam structural system widely used as the lateral-drift resistant system of high-rise buildings. The results show that the design strength of the coupling beams decreases with decreasing concrete strength and core wall thickness, but the shape remains unchanged. In all six models, the design strength of the coupling beams has the largest value at the 10~15th floors in a 40-story building. In other words, the design strength of the coupling beams has the largest value at 0.25H~0.375H where the inflection point exists. The thicker the walls, the smaller the change in the member forces. The thickness of the coupled shear walls has more influence on the design strength of the coupling beams than the concrete strength.

MICROLEAKAGE AND SHEAR BOND STRENGTH OF FLOWABLE COMPOSITE RESIN (Flowable Composite Resin의 미세변연누출 및 전단결합강도)

  • 박성준;오명환;김오영;이광원;엄정문;권혁춘;손호현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.332-340
    • /
    • 2001
  • Flowable composite resin has lower filler content, increased flow, and lower modules of elasticity. It is suggested that flowable composite resin can be bonded to the tooth structure intimately and absorb or dissipate the stress. Therefore, it may be advantageous to use flowable composite resin for the base material of class II restoration and for the class V restoraton. The purpose of this study was to evaluate the microleakage and shear bond strength of four flowable composite resins (Aeliteflo, Flow-It, Revolution, Ultraseal XT Plus) compared to Z100 using Scotchbond Multi Purpose dentin bonding system. To evaluate the microleakage, notch-shaped class V cavities were prepared on buccal and lingual surfaces of 80 extracted human premolars and molars on cementum margin. The teeth were randomly divided into non-thermocycling group (group 1) and thermocycling group (group 2) of 40 teeth each. The experimental teeth of each group were randomly divided onto five subgroups of eight samples (sixteen surfaces). The Scotchbond Multi-Purpose and composite resin were applied for each group following the manufacturer's instructions. the teeth of group 2 were thermocycled five hundred times between 5$^{\circ}C$ and 55$^{\circ}C$. The teeth of group 2 were placed in 2% methylene blue dye for 24 hours, then rinsed with tab water. The specimens were embedded in clear resin, and sectioned longitudinally with a diamond saw. The dye penetration on each of the specimen were observed with a stereomicioscope at $\times$20 magnification. To evaluate the shear bond strength, 60 teeth were divided into five groups of twelve teeth each. The experimental teeth were ground horizontally below the dentinoenamel junction, so that no enamel remained. After applying Scotchbond Multi-Purpose on the dentin surface, composite resin was applied in the shape of cylinder. The cylinder was 4mm in diameter and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. After shear bond strength measurement, mode of failure was evaluated with a stereomicroscope at $\times$30 magnification. All data were statistically analyzed by One Way ANOVA and Student-Newman-Keuls method. The correlation between microleakage and shear bond strength was analyzed by linear regression. The results of this study were as follows ; 1. In non-thermocycling group, the leakage value of Z100 was significantly lower than those of flowable composite resins at the enamel and dentin margin, margin, except that Revolution showed the lower leakage value than that of Z100 at the dentin margin (p<0.05). 2. In thermocycling group, the leakage values of Z100 and Ultraseal XT Plus were lower than those of other subgroup at the enamel and dentin margin, except that Flow-It showed the lower leakage value than that of Ultraseal XT Plus at the dentin margin (p<0.05). 3. The leakage value of Z100 and Ultraseal XT Plus in thermocycling group were not higher than that in non-thermocycling group at the enamel margin. The leakage value of Z100 in thermocycling group was not higher than that in non-thermocycling group at the dentin margin (p<0.05). 4. As for the shear bond strength measurement, there were no statistically significant differences among groups (p<0.05). The shear bond strengths given in descending order were as follows: Z100(16.81$\pm$2.98 MPa), Flow-It(14.8$\pm$4.43 MPa), Aeliteflo(14.34$\pm$3.69 MPa), Revolution(13.46$\pm$4.23 MPa), Ultraseal XT Plus(12.83$\pm$3.16 MPa). 5. Failure modes of all specimens were adhesive failures. 6. There was no correlation between microleakage and shear bond strength.

  • PDF

Vibration Analysis of Rectangular Thick Hate with Concentrated Mass (집중질량을 갖는 후판의 진동해석)

  • Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.711-714
    • /
    • 2005
  • This paper is for the vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. the thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analyize plat which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as Kw1 and Kw2 respectively. The value of Kw1 and Kw2 can be changed as 0, 10, $10^2,\;10^3$ and the value of SFP(shear foundation parameter) also be changed 0, 5, 10, 15 respectively. Finally, In this paper, vibration of retangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with Concentrated Mass are calculated

  • PDF

A study on the Measurement of Interface Friction between Soils and Fibers (흙과 섬유의 상호마찰 특성의 측정에 관한 연구)

  • 장병욱;서동욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.467-472
    • /
    • 1998
  • The interface friction angle between soil and fibers is important to evaluate improvement of the shear strength on fiber mixed soils. Direct shear test and pullout tort conducted by an apparatus made specially for the purpose of this study, was analyzed to know how fiber and soils affect on interface friction angle. By the results, The value of interface friction angle of sandy soils is larger than that of clayey soils. As a diameter of fiber is large, the value of friction coefficient of sandy soil is increase and that of clayey soil is decrease. An interface friction angle of well graded soil is larger value than that of uniform graded soil

  • PDF