• Title/Summary/Keyword: shear tie

Search Result 136, Processing Time 0.025 seconds

Evaluation of Shear Strength of RC Beams using Strut-and-Tie Model (스트럿-타이 모델을 이용한 세장한 철근콘크리트 부재의 강도평가)

  • Park, Hong-Gun;Eom, Tae-Sung;Park, Chong-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.271-274
    • /
    • 2005
  • Existing strut-and-tie model cannot be applied to analysis of slender beams without shear reinforcement because shear transfer mechanism is not formed. In the present study, a new strut-and-tie model with rigid joint was developed. Basically, concrete strut is modeled as a frame element which can transfer shear force (or moment) as well as axial force. Employing Rankine failure criterion, failure strength due to shear-tension and shear-compression developed in compressive concrete strut was defined. For verification, various test specimens were analyzed and the results were compared with tests. The proposed strut-and-tie model predicted shear strength and failure displacement with reasonable precision, addressing the design parameters such as shear reinforcement, concrete compressive strength, and shear span ratio.

  • PDF

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

The Strut-and-Tie Models for Shear Dominant R/C Members considering Plastic Deformations (소성 변형을 고려한 전단 지배 부재의 스트럿-타이 모델)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.145-152
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Shear Analysis of RC Structure using Evolutionary Structural Optimization (점진적 구조 최적화 기법을 이용한 철근 콘크리트 구조물의 전단 해석)

  • Kwak, Hyo-Gyoung;Yang, Kyu-Young;Shin, Dong-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.319-328
    • /
    • 2011
  • This paper introduces the construction of Strut-Tie model based on the Evolutionary Structural Optimization(ESO) method. Differently from conventional ESO method which uses plane stress elements, the introduced approach adopts the use of truss elements with the fact that the optimum topology of structures by ESO method is open a truss-like structure. Several examples are provided to demonstrate the capability of the proposed method in finding the best Strut-Tie models. In advance, it is shown that the introduced method is supported through the correlation studies between two-dimensional plane stress analysis and Strut-Tie models, and can be used effectively in practice, especially in shear design of complex reinforced concrete members where no previous experience is available.

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (II) Validity Evaluation (단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율 - (II) 적합성 평가)

  • Kim, Byung Hun;Jeung, Chan Haek;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.269-279
    • /
    • 2008
  • In this study, the ultimate strengths of 229 simply supported reinforced concrete deep beams tested to shear failure were evaluated by the ACI 318-05's strut-tie model approach implemented with the presented indeterminate strut-tie model and its load distribution ratio. The ultimate strengths of the deep beams were also estimated by the experimental shear equations, design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the present strut-tie model and its load distribution ratio was examined through the comparison of the strength analysis results classified according to the prime design variables of the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete.

Design in shear of reinforced concrete short columns

  • Moretti, M.L.;Tassios, T.P.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.265-283
    • /
    • 2013
  • This research was prompted by the paucity of specific code provisions regarding the design of short columns for shear. The purpose of this paper was to investigate whether the use of the normal shear design procedure of various codes may or may not be applied to reliably calculate the shear strength of short columns. Provisions of the codes American ACI 318M-08, Canadian CSA A23.3-04, Japanese AIJ Guidelines, New Zealand NZS 3101, European EN 1998 (EC8) parts 1 and 3, combined with EN 1992-1-1 (EC2), and draft fib Model Code 2010, as well as a strut-and-tie model are applied on short columns tested under cyclic loading that failed in shear. Actual shear resistances are compared to predictions, and the resulting shortcomings of the codes are identified. EN1998-3 appears to be the only code among those considered that may be reliably applied to estimate the shear resistance of short columns. Further, the proposed strut-and tie model can be a useful tool for the detailed design and assessment of short columns.

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.

Shear Design of Reinforced Concrete Shear Walls with Openings using Strut-and-Tie Models (스트럿-타이 모델을 이용한 개구부를 갖는 전단벽의 전단 설계)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.244-247
    • /
    • 2004
  • This study proposes the design method of the shear walls with openings using strut-and-tie models. Strut-and-tie models are constructed for opening near the middle of the wall and for opening near a wall boundary. These enables an admissible load path for the horizontal earthquake force. These models consider the size and position of opening effectively. Each model is suitable for the seismic response corresponding with lateral forces in a given direction to be considered. The proposed models are good agreements with nonlinear finite element analysis(DIANA) results.

  • PDF