• Title/Summary/Keyword: shear stress factor

Search Result 438, Processing Time 0.026 seconds

Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load (인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가)

  • 손일선;정원석;이휘광;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF

Dynamic Stress Intensity Factors of the Half Infinite Crack in the Orthotropic Material Strip with a Large Anisotropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1557-1564
    • /
    • 2000
  • When the half infinite crack in the orthotropic material strip with a large anisotropic ratio(E11>>E22) propagates with constant velocity, dynamic stress component $\sigma$y occurre d along the $\chi$ axis is derived by using the Fourier transformation and Wiener-Hopf technique, and the dynamic stress intensity factor is derived. The dynamic stress intensity factor depends on a crack velocity, mechanical properties and specimen hight. The normalized dynamic stress intensity factors approach the maximum values when normalized time(=Cs/a) is about 2. They have the constant values when the normalized time is greater than or equal to about 2, and decrease with increasing a/h(h: specimen hight, a: crack length) and the normalized crack propagation velocity( = c/Cs, Cs: shear wave velocity, c: crack propagation velocity).

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

Analysis of Stress-Strain Relationship of Nano Structures According to the Size and Crystal Orientation by Using the Molecular Dynamics Simulation (분자동역학을 이용한 나노구조물의 크기와 결정방향에 따른 응력-변형률 관계 해석)

  • Kang, Yong-Soo;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1047-1054
    • /
    • 2008
  • In this paper, the molecular dynamics (MD) simulations are performed with single-crystal copper blocks under simple shear and simple tension to investigate the effect of size and crystal orientation. There are many variances to give influences such as deformation path, temperature, specimen size and crystal orientation. Among them, the crystal orientation has a primary influence on the volume averaged stress. The numerical results show that the volume averaged shear stress decreases as the specimen size increases and as the crystal orientation changes from single to octal. Furthermore, the Schmid factor and yield stress for crystal orientation are evaluated by using the MD simulation on the standard triangle of stereographic projection.

Structural Analysis of Hammering System for Pine Cone Harvest using Industrial Drone (산업용 드론을 이용한 잣수확용 해머링 시스템의 구조해석)

  • Ki-Hong Kim;Dae-Won Bae;Won-Sik Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.285-291
    • /
    • 2023
  • In this paper, in order to secure the safety and productivity of pine cone harvest, modeling and structural analysis of the hammering system for pine cone harvest drone that can easily access pine cone of Pinus koraiensis and collide with them to harvest them was performed. It calculate the equivalent stress for the structure of the hammering system and the yield strength of the applied material by applying the shear force of the stalk at which the pine cone is separated from the branch, and it is to verify the safety of the structure and propose an optimal design through appropriate factor of safety and design change. The shear force of the stalk at which the pine cone was separated from the branch was 468 N, and was applied to both ends of the hammering system. The yield strength of SS400 steel used in the hammering system is 245 ㎫, and the design change and structural analysis were performed so that the Von Mises stress could be less than 122.5 ㎫ by applying the factor of safety of 2.0 or more. As a result of the structural analysis of the frist modeling, the Von Mises stress was 220.3 ㎫, the factor of safety was 1.12, and the stress was concentrated in the screw fastening holes. As a result of the design change of the screw fastening holes, the Von Mises stress was 169.4 ㎫, the factor of safety was 1.45, and the stress was concentrated on the side part. As a result of the design change by changing screw fastening holes and adding ribs, the Von Mises stress was 121.6 ㎫, and the factor of safety was 2.02. The safety of the hammering system was secured with an optimal design with little change in mass. There was no deformation or damage as a result of experimenting on pine cone harvest by manufacturing the hammering system with an optimal design.

The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force (반평면 전단하중력하에서 곡면형상 접합면을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구)

  • 박상현;전흥재
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2000
  • The general solution of the anti-plane shear problem for the curved interfacial crack between viscoelastic foam and composites was investigated with the complex variable displacement function. Kelvin-Maxwell three parameter model is used to present viscoelasticity and the Laplace transform was applied to treat the viscoelastic characteristics of foam in the analysis. The stress intensity factor near the interfacial crack tip was predicted by considering both anisotropic and viscoelastic properties of two different materials. The results showed that the stress intensity factor increased with increasing the curvature of the curved interfacial crack and it also increased and eventually converged to a specific value with increasing time. The stress intensity factor increased with increasing the ratio of stiffness coefficients between foam and composites and the effect of fiber orientation on the stress intensity factor decreased with increasing the ratio of stiffness coefficients between foam and composites.

  • PDF

Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method

  • Bakoura, Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • In this article, the mechanical buckling analysis of simply-supported functionally graded plates is carried out using a higher shear deformation theory (HSDT) in conjunction with the stress function method. The proposed formulation is variationally consistent, does not use a shear correction factor and gives rise to a variation of transverse shear stress such that the transverse shear stresses vary parabolically through the thickness satisfying the surface conditions without stress of shear. The properties of the plate are supposed to vary across the thickness according to a simple power law variation in terms of volume fraction of the constituents of the material. Numerical results are obtained to study the influences of the power law index and the geometric ratio on the critical buckling load.

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.683-689
    • /
    • 2017
  • In this paper, a hyperbolic shear deformation theory is presented for bending analysis of functionally graded beams. This theory used in displacement field in terms of thickness co-ordinate to represent the shear deformation effects and does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the virtual work principle and the physical neutral surface concept. A simply supported functionally graded beam subjected to uniformly distributed loads and sinusoidal loads are consider for detail numerical study. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

Effect of Fiber Volume Fraction on the Stress Intensity Factors for Multi Layered Composites Under Arbitrary Anti-Plane Shear Loading

  • Kim, Sung-Ho;Lee, Kang-Yong;Joo, Sung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.920-927
    • /
    • 2000
  • A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear loading. The problem is formulated as a mixed boundary value problem by using the Fourier integral transform method. This gives a Fredholm integral equation of the second kind. The integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed in terms of the material orthotropy for each layer, number of layers, crack length to layer thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid composites are investigated in terms of the local fiber volume fraction and the global fiber volume fraction.

  • PDF