• Title/Summary/Keyword: shear strength prediction

Search Result 295, Processing Time 0.025 seconds

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

Optimization of Friction Stir Spot Welding Parameters of Lap Joint between AA1100 Aluminum Alloy and SGACD Zinc-coated Steel

  • Triwanapong, Surat;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.161-168
    • /
    • 2015
  • This article aims to apply a friction stir spot welding for producing a lap joint of AA1100 aluminum alloy and SGACD zinc coated steel. The experiment was designed by MINITAB and then investigated the relation among the friction spot joint parameters. The experimental results are as follows. The friction spot joining could successively produce the lap joint of AA1100 aluminum alloy and SGACD zinc coated steel. Interaction between the rotate speed, the hold time and the tool insert speed affected to vary the tensile shear strength of the lap joint. The prediction of the optimized welding parameters that indicated the tensile shear strength of 1966 N was the rotated speed of 4000 rpm, the pin hold time of 6 sec, the pin insert rate of 6 mm/min with the S/N ratio of 66.56 that was higher than that of the total mean S/N ratio. The practical experiment of the predicted welding parameters indicated the tensile shear strength of 2165 N and had the S/N ratio of 66.70 that was higher than the predicted tensile shear strength.

Calculation of Shear Strength of Rock Slope Using Deep Neural Network (심층인공신경망을 이용한 암반사면의 전단강도 산정)

  • Lee, Ja-Kyung;Choi, Ju-Sung;Kim, Tae-Hyung;Geem, Zong Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2022
  • Shear strength is the most important indicator in the evaluation of rock slope stability. It is generally estimated by comparing the results of existing literature data, back analysis, experiments and etc. There are additional variables related to the state of discontinuity to consider in the shear strength of the rock slope. It is difficult to determine whether these variables exist through drilling, and it is also difficult to find an exact relationship with shear strength. In this study, the data calculated through back analysis were used. The relationship between previously considered variables was applied to deep learning and the possibility for estimating shear strength of rock slope was explored. For comparison, an existing simple linear regression model and a deep learning algorithm, a deep neural network(DNN) model, were used. Although each analysis model derived similar prediction results, the explanatory power of DNN was improved with a small differences.

Prediction of the Shear Strength of FRP Strengthened RC Beams (II) - Verification and parametric study - (FRP로 보강된 철근 콘크리트보의 전단강도 예측 (II) - 모델 검증 및 변수연구 -)

  • Sim Jong-Sung;Park Cheol-Woo;Moon Do-Young;Sim Jae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.353-359
    • /
    • 2005
  • To evaluate the proposed shear strength models developed in a companion paper, the shear strengths of test specimens strengthened with FRP were predicted by ACl specification, and elsewhere. The advantage and disadvantage of the models were investigated by the comparisons with the test results. The characteristics and limitations of the existing model were investigated with respect to FRP types, strengthening methods, shear span to depth ratio and effective strength of FRP. The results of this parametric study showed that the proposed shear strength model is more accurate than other models.

An Analytical Evaluation on the Ductility of Reinforced High-Strength Concrete Columns (고강도 콘크리트를 이용한 철근콘크리트 기둥 부재의 연성평가에 관한 연구)

  • 장일영;송재호;한상묵;박훈규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.57-66
    • /
    • 2000
  • The ductility is an important consideration in the design of reinforced concrete structures. In the seismic design of reinforced concrete columns, it is necessary to allow for relatively large ductilities that the seismic energy be absorbed without shear failure of significant strength degradation after the reinforcement yielding in columns. Therefore, prediction of the ductility should be as accurate as possible. This research investigate the ductile behavior of rectangular reinforced high-strength concrete columns like as bridge piers with confinement steel. The effects on the ductility of axial load, lateral reinforcement ratio, longitudinal reinforcement ratio, shear span ratio, and compressive strength of concrete were investigated analytically using layered section analysis. as the results, it was proposed the proper relationship between ductility and variables and formulated into equations.

Computer modeling and analytical prediction of shear transfer in reinforced concrete structures

  • Kataoka, Marcela N.;El Debs, Ana Lucia H.C.;Araujo, Daniel de L.;Martins, Barbara G.
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.151-159
    • /
    • 2020
  • This paper presents an evaluation of shear transfer across cracks in reinforced concrete through finite element modelling (FEM) and analytical predictions. The aggregate interlock is one of the mechanisms responsible for the shear transfer between two slip surfaces of a crack; the others are the dowel action, when the reinforcement contributes resisting a parcel of shear displacement (reinforcement), and the uncracked concrete comprised by the shear resistance until the development of the first crack. The aim of this study deals with the development of a 3D numerical model, which describes the behavior of Z-type push-off specimen, in order to determine the properties of interface subjected to direct shear in terms cohesion and friction angle. The numerical model was validated based on experimental data and a parametric study was performed with the variation of the concrete strength. The numerical results were compared with analytical predictions and a new equation was proposed to predict the maximum shear stress in cracked concrete.

Prediction of Mechanical Properties for Spatially Reinforced Composites (공간적으로 보강된 복합재의 기계적 물성치 예측)

  • 유재석;김천곤;홍창선;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.177-182
    • /
    • 2000
  • This paper predicted the equivalent stiffness of spatially reinforced composites (SRC) using the volume average of a fiber rod and matrix stiffness, and the strength of SRC using the stiffness reduction and the modified Tsai-Wu composite failure theory. Those equivalent engineering constants are used to analyze the mechanical behavior and the failure of SRC structures. Because the distribution of equivalent engineering constants is varying with the change in SRC shape, we made a program that predicts engineering constants of SRC. Both 3-D and 4-D SRC show the smallest tensile modulus and the largest shear modulus at the maximum rotated direction from each rod. Also the strength properties show the same tendency.

  • PDF

Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST) (직접단순전단시험을 통한 세립토의 강도와 강성저하 예측)

  • Song, Byung-Woong;Yasuhara, kazuya;Kim, Jeong-Ho;Choi, In-Gul;Yang, Tae-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF

The Bending Strength and Adhesive Properties of PRF and MUF Glulam (PRF, MUF 집성재의 휨 강도와 접착 성능 평가)

  • Park Jun-Chul;Kim Keon-Ho;Hong Soon-Il
    • Journal of the Korea Furniture Society
    • /
    • v.15 no.2
    • /
    • pp.19-27
    • /
    • 2004
  • As glulam is a woody material, it is necessary to be more careful in a gluing process. It takes 6-7 hours at $40-60^{\circ}C$ to harden PRF resin used in making structural glulam, and about 24 hours at room temperature. In the present process which can not use a press continuously, reducing the hardening time is necessary to increase production. The experiment was done to compare the adhesive properties of PRF resin and MUF resin through bending test, block shear strength test and water soaking test. In comparing the bending strength of prediction MOE is 1.2 times higher that actual MOE. PRF and MUF do not show significant difference in MOE and MOR, and in block shear strength test, such as shear strength and wood failure rate. However, in water soaking and boiling water soaking tests PRF and MUF show the significant difference in delamination rate.

  • PDF

Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars

  • Alzabeebee, Saif;Dhahir, Moahmmed K.;Keawsawasvong, Suraparb
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.143-154
    • /
    • 2022
  • Corrosion of steel reinforcement is considered as the main cause of concrete structures deterioration, especially those under humid environmental conditions. Hence, fiber reinforced polymer (FRP) bars are being increasingly used as a replacement for conventional steel owing to their non-corrodible characteristics. However, predicting the shear strength of beams reinforced with FRP bars still challenging due to the lack of robust shear theory. Thus, this paper aims to develop an explicit data driven based model to predict the shear strength of FRP reinforced beams using multi-objective evolutionary polynomial regression analysis (MOGA-EPR) as data driven models learn the behavior from the input data without the need to employee a theory that aid the derivation, and thus they have an enhanced accuracy. This study also evaluates the accuracy of predictive models of shear strength of FRP reinforced concrete beams employed by different design codes by calculating and comparing the values of the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2), and percentage of prediction within error range of ±20% (a20-index). Experimental database has been developed and employed in the model learning, validation, and accuracy examination. The statistical analysis illustrated the robustness of the developed model with MAE, RMSE, 𝜇, 𝜎, R2, and a20-index of 14.6, 20.8, 1.05, 0.27, 0.85, and 0.61, respectively for training data and 10.4, 14.1, 0.98, 0.25, 0.94, and 0.60, respectively for validation data. Furthermore, the developed model achieved much better predictions than the standard predictive models as it scored lower MAE, RMSE, and 𝜎, and higher R2 and a20-index. The new model can be used in future with confidence in optimized designs as its accuracy is higher than standard predictive models.