DOI QR코드

DOI QR Code

심층인공신경망을 이용한 암반사면의 전단강도 산정

Calculation of Shear Strength of Rock Slope Using Deep Neural Network

  • Lee, Ja-Kyung (Dept. of Civil Engineering, Korea Maritime and Ocean Univ.) ;
  • Choi, Ju-Sung (Dept. of Civil Engineering, Korea Maritime and Ocean Univ.) ;
  • Kim, Tae-Hyung (Dept. of Civil Engineering, Korea Maritime and Ocean Univ.) ;
  • Geem, Zong Woo (Dept. of Smart City & Energy, Gachon Univ.)
  • 투고 : 2022.05.02
  • 심사 : 2022.06.16
  • 발행 : 2022.06.30

초록

전단강도는 암반 비탈면 안정성 평가에서 가장 중요한 지표이다. 일반적으로 기존 문헌자료, 역해석, 실험 등의 결과를 비교하여 산정한다. 암반 비탈면에서의 전단강도는 불연속면의 상태와 관련된 변수를 추가로 고려해야 한다. 이 변수들은 시추조사를 통해 여부를 파악하는 것이 어려울뿐더러 전단강도와의 정확한 관계를 찾아내기도 어렵다. 본 연구에서는 역해석을 통해 산정된 데이터를 이용했다. 기존 고려되었던 변수들의 관계를 딥러닝에 접목시켜 전단강도 산정에 적합한지 그 가능성을 모색하였다. 비교를 위해 기존에 사용되는 간단한 선형회귀(Linear Regression) 모델과 딥러닝 알고리즘인 심층인공신경망(DNN) 모델을 사용하였다. 각 분석 모델은 비슷한 예측결과를 도출해내었지만 미세한 차이로 DNN의 설명력이 개선된 결과를 나타내었다.

Shear strength is the most important indicator in the evaluation of rock slope stability. It is generally estimated by comparing the results of existing literature data, back analysis, experiments and etc. There are additional variables related to the state of discontinuity to consider in the shear strength of the rock slope. It is difficult to determine whether these variables exist through drilling, and it is also difficult to find an exact relationship with shear strength. In this study, the data calculated through back analysis were used. The relationship between previously considered variables was applied to deep learning and the possibility for estimating shear strength of rock slope was explored. For comparison, an existing simple linear regression model and a deep learning algorithm, a deep neural network(DNN) model, were used. Although each analysis model derived similar prediction results, the explanatory power of DNN was improved with a small differences.

키워드

참고문헌

  1. Ahn, S. M. (2016), Deep Learning Architectures and Applications, Journal of intelligence and information systems, Vol.22, No.2, pp.127-142. https://doi.org/10.13088/JIIS.2016.22.2.127
  2. Baek, R., Hong, G. -S., Yang, S. -H. and Kim, B. -G. (2013), Visualization Technique of Spatial Statistical Data and System Implementation, KIPS transactions on software and data engineering, Vol.2 No.12, pp.849-854. https://doi.org/10.3745/KTSDE.2013.2.12.849
  3. Barton, N. R. (1973), Review of a New Shear Strength Criterion for Rock Joints, Eng. Geol., Vol.7, pp.287-332. https://doi.org/10.1016/0013-7952(73)90013-6
  4. Barton, N. R. (1974), A Review of the Shear Strength of Filled Discontinuities in Rock, Norwegian Geotech. Inst. Publ. No.105.
  5. Choi, E. K., Kim, S. W., Kim, I. S. and Lee, K. H. (2012), Fig. 9. Shear strength versus normal stress curves applied Mohr-Coulomb failure criterion for design, Hoek & Bray, and averaged value
  6. Hoek, E. (1990), Estimating Mohr-Coulomb Friction and Cohesion Values from the Hoek-Brown Failure Criterion, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.27, No.3, pp.227-229. https://doi.org/10.1016/0148-9062(90)94333-O
  7. Hoek, E. and Bray, J. D. (1974), Rock Slope Engineering, CRC Press, p.368.
  8. Hoek, E. and Brown, E. T. (1997), Practical Estimates of Rock Mass Strength, International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.8, pp.1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  9. Kim, C. -H., Kim, B. -Y., Park, T. -W. and Kim, T .-H. (2018), Estimation of Shear Strength of Discontinuous(bedding) Cut Sedimentary Rock Slope by Using Back Analysis, J. Korean Geosynthetics Society, Vol.17, No.1, pp.139-152. https://doi.org/10.12814/JKGSS.2018.17.1.139
  10. Kim, K. S., You, B. O. and Lee, S. D. (2002), Failure Characteristics of Cut Slopes of Shale in Kyoungsang Basin, Proceedings of the seminar and field workshop for mudstone and shale, organized by the Korean Geotechnical Socity for Rock Mechanics Commission, pp.103-114.
  11. Kim, S. -W., Choi, E. -K., Kim, J. -W., Kim, T. -H. and Lee, K. -H. (2017), Chemical Weathering Index of Clastic Sedimentary Rocks in Korea, The Journal of Engineering Geology, Vol.27, No.1, pp.67-79. https://doi.org/10.9720/KSEG.2017.1.67
  12. Kim, Y. (2021), An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering, Tunnel and Underground Space., pp.25-40, https://doi.org/10.7474/TUS.2021.31.1.025
  13. Kim, Y. M. and Harianto, R. (2021), Estimation of effective cohesion using artificial neural network based on index soil properties: A Singapore case, Engineering Geology, Vol.289, https://doi.org/10.1016/j.enggeo.2021.106163
  14. Korea Expressway Corporation (2001), Design Reports the Busan-Ulsan Expressway.
  15. Korea Expressway Corporation (2008), Reports of Slope Stability Analysis on the Busan-Ulsan Expressway Construction Site.
  16. Lee, C. W. and Moon, H. K. (1994), Development of an Artificial Neural Network - Expert System for Preliminary Design of Tunnel in Rock Masses, Geotechnical Engineering, 10(3), 79-96.
  17. Lee, H. -J., Kim, C. -H., Hwang, W. -K., Kim, T. -H. (2019), Characteristic Analysis of Shear Strength of Rock Slope Discontinuity in Yangsan Fault System, J. Korean Geosynthetics Society, Vol.18, No.3, pp.11-22
  18. Prist, S. D. (1992), Discontinuity Analysis Rock Engineering, Chapman & Hall, London, Vol.228, No.13, pp.39-49.
  19. Sklavounos, P. and Sakellariou, M. (1995), Intelligent classification of rock masses, Transactions on Information and Communications Technologies 8.
  20. Yang, H. S. and Kim, J. C. (1999), Rock Mass Rating for Korean Tunnels Using Artificial Neural Network, J. of Korean Society for Rock Mechanics, Tunnel & Underground, 9(3), 214-220.
  21. You, B. O. (2002), Assumption of Shear Strength on Failed Discontinuities Due to Back Analysis, Proc. of fall conference of the Korean Geotechnical Society, pp.213-227
  22. Zarei, C., Sihag, P. and Rahimi, L. (2021), Prediction of Undrained Shear Strength of Crushed Tire Mixture with Fine-Grained Soil by using Machine Learning Approaches, https://orcid.org/0000-0002-7761-0603