• Title/Summary/Keyword: shear strength of joints

Search Result 428, Processing Time 0.022 seconds

A Study on the Process Condition Optimization of Lead Free Solder Ball (무연 솔더 볼의 공정조건 최적화에 관한 연구)

  • 김경섭;선용빈;장호정;유정희;김남훈;장의구
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.126-129
    • /
    • 2002
  • This article presents that the affecting factors to solderability and initial reliability. It was discussed that effect of the solder ball hardness and composition on the reliability of solder joints. In this study, lead free solder alloys with compositions of Sn-Cu, Sn-Ag, Sn-Ag-Cu, Sn-Ag-Cu-Bi were applied to the $\muBGA$ packages. As a result of experiments, the high degree of hardness with the displacement of 0.22mm was obtained Sn-2.0Ag-0.7Cu-3.0Bi. The shear strength of lead free solder was higher than of Sn-37Pb solder, and it was increased about 150% in Sn-2.0Ag-0.7Cu-3.0Bi.

  • PDF

An Experimental Studies on the Fatigue Behavior of Preflex Girder (프리플렉스형의 피로거동에 관한 실험적 고찰)

  • CHANG, Dong Il;Lee, Myeong Gu;LEE, Seung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.107-116
    • /
    • 1996
  • The studies are conducted to investigate the fatigue and fracture, behavior of preflex girder. In this work, the fatigue tests using by constant amplitude fatigue loading and 4-point-loading to maintain pure bending condition in the mid-span of preflex girder will be performed. It is expected from the results of the studies to provide the fatigue strength and the S-N curve of preflex girders. In addition, it will be ensured that fracture initiation occurs in the welded part of horseshoe-type shear connector as well as in other welded joints.

  • PDF

Dissimilar Friction Spot Joining between AA5052-H32 and AA6022-T4 (마찰교반 점용접(FSJ)을 이용한 Al alloy의 이종접합)

  • Kim, Teuk-Gi;Jo, Hyeon-Jin;Kim, Hong-Ju;Cheon, Chang-Geun;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.219-221
    • /
    • 2006
  • In an attempt to optimize friction spot joining process of Al alloys for automobiles, Friction spot joining was used make lap feint on strips of AA5052-H32 and AA6022-T4 aluminium alloy. The effects of joining parameters such as tool rotating speed, plunging depth, joining time and kind of upper plate on the joints properties were investigated. An optimal tensile shear strength parameter of a tool rotating speed of 1000rpm, dwell time 2.5sec with upper plate 6022 can be found to make a good joint.

  • PDF

Study on Affecting Factors for the Segmental Joint Behavior of Spliced Girder Bridges (분절교량 접합부 거동의 영향인자에 대한 연구)

  • Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.9-16
    • /
    • 2019
  • Recently, precast PSC girder bridges have been widely applied for short and middle span bridges. The construction of the spliced girder bridges has been increasing to overcome the length limit of girder and transportation restrictions. In case of the spliced girder, the integrity of the segmental joints is very important to secure the structural soundness of bridge because the discontinuity on the segmental joints between adjacent segments could be vulnerable point. The study of segmental joint behavior with different influence factors of joint type, shear key installation, confining force is very important. In this research, finite element analysis and scaled model test with different shear key shapes and confining forces were carried out and the comparative study was performed to evaluate the segmental joint behavior of precast spliced PSC girder bridge. It was confirmed that the installation of shear key with height and depth ratio of 1/2~1/3 and applying of confining force of 1/2 of the concrete strength at the joint was effective in improving the integrity of segmental joint. In addition, the field loading test for existed precast spliced PSC girder bridge was performed and the measurement of the difference of deflection between adjacent segments at segmental joint was proposed as the assessment solution of the integrity of segmental joint.

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

Retrofitting of steel pile-abutment connections of integral bridges using CFRP

  • Mirrezaei, Seyed Saeed;Barghian, Majid;Ghaffarzadeh, Hossein;Farzam, Masood
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.209-226
    • /
    • 2016
  • Integral bridges are typically designed with flexible foundations that include one row of piles. The construction of integral bridges solves difficulties due to the maintenance of expansion joints and bearings during serviceability. It causes integral bridges to become more economic comparing with conventional bridges. Research has been focused not only to enhance the seismic performance of newly designed bridges, but also to develop retrofit strategies for existing ones. The local performance of the pile to abutment connection will have a major effect on the performance of the structure and the embedment length of pile inside the abutment has a key role to provide shear and flexural resistance of pile-abutment connections. In this paper, a simple method was developed to estimate the initial value of embedment length of the pile for retrofitting of specimens. Four specimens of pile-abutment connections were constructed with different embedment lengths of pile inside the abutment to evaluate their performances. The results of the experimentation in conjunction with numerical and analytical studies showed that retrofitting pile-abutment connections with CFRP wraps increased the strength of the connection up to 86%. Also, designed connections with the proposed method had sufficient resistance against lateral load.

Analysis of Rock Slope Stability by Using GIS in Mt. Keumsu Area (지구정보시스템을 이용한 금수산일대의 암반사면 안정성 평가)

  • 배현철
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • The goal of this study is to assess the spatial distribution of natural slopes and cutting slopes under would-be development. For this goal, a quantitative slope stability analysis method using GIS integrated with a computer program was developed. Through field investigations, the discontinuity parameters were collected such as orientation of discontinuity, persistence, spacing, JRC, JCS, and water depth. The distributions were interpolated from the ordinary kriging method in ARC/INFO GIS after variogram analysis. The layers showing all parameters needed for limit equilibrium analysis were constructed. The final layer using GIS works composed of 162,352 polygons, that is, unit slopes. The rock slope stability analysis program was coded by C++ language. This program can calculate geometrical vectors related to rock block failures using input orientation data and direction and dimension of strength to occur failure. Also, this can calculate shear strength of joints through empirical equations and quantitative factors of safety. This methodology was applied to the study area which is located in Jaecheon city and Danyang-gun of the northeastern Keumsu is about 135$km^2$. As a result, the study area was entirely stable but unstable, that is, factor of safety less than 1.0dominantly at the slopes near Keumsil, Daejangri, Keumsungmyun and Sojugol, Mt. Dongsan, Juksongmyun by the natural slope stability analysis. Assuming the cutting slope showing the same direction immediate, and quantitative analysis of factors of safety for a regional area could be conducted through GIS integrated with a computer program of limit equilibrium.

  • PDF

A Study on Characteristics of Sn-37Pb and Sn-4.0Ag-0.5Cu Solder Joints as Various A:V Ratio (A:V Ratio 변화에 따른 Sn-37Pb, Sn-4.0Ag-0.5Cu Solder 접합부의 특성 연구)

  • Han, Hyun-Joo;Lim, Seok-Jun;Moon, Jung-Tak;Lee, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.67-73
    • /
    • 2001
  • To investigate the relationships of solder joint characteristics with solder composition and A:V ratio (solder volume per pad area), Sn-37Pb and Sn-4.0Ag-0.5Cu solder balls with 330, 400, 450 and $457{\mu}{\textrm}{m}$ size were reflowed on same substrate. Sn-37Pb and Sn-4.0Ag-0.5Cu was reflowed at $220^{\circ}C$ and $240^{\circ}C$ respectively by IR-type soldering machine. As a result of reflowed solder- ball diameter(D) and height(H) measurement, D/H was decreased with solder ball size increment in range of 330~450 ${\mu}{\textrm}{m}$. But, D/H was increased in the solder joint for 457 ${\mu}{\textrm}{m}$ size, it was caused possibly by decrement of solder ball height increment compared with solder volume increment. As a result of shear and pull test, joint strength with A:V ratio was high. Joint strength of Sn-4.0Ag-0.5Cu was higher than Sn-37Pb. However, Sn-37Pb had more stable solder joint of small standard deviation. A thick and clean scallop type Ni-Cu-Sn intermetallic compound layer was formed in high A:V ratio and Sn-4.0Ag-0.5Cu solder joint interface.

  • PDF

The effects of Welding Conditions on Tensile Properties of Friction Stir Lap Welded of Dissimilar Al Alloy, A6K31/A5J32 (이종 알루미늄 합금 A6K31/A5J32 겹치기 마찰교반 접합부의 인장성질에 미치는 접합조건의 영향)

  • Yoon, Tae-Jin;Kim, Sang-Ju;Song, Sang-Woo;Hong, Jae-Keun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.72-79
    • /
    • 2011
  • The scope of this investigation is to evaluate the effect of joining parameters on the microstructural features and mechanical properties of dissimilar aluminum alloys, 1mm-thickness fixing AA6K31 at the top position and fixing AA5J32 at the bottom position. The friction stir lap welds were studied under various welding conditions, rotation speed of 1000, 1250, 1500rpm and welding speed of 100, 300, 500, 700mm/min, respectively. Mechanical test has been investigated in terms of tensile shear test and hardness test. The results showed that three type nugget shapes such as onion ring, zigzag type, hooking with the void, have been observed with revolutionary pitch. All welding conditions fractured at the HAZ of top plate, A6K31 and also the strength compare with base metal of lap joints were low efficiency, 52~63%. The thickness of fractured position was decreased with the lower heat input conditions. The relationships were excellent due to linear between the effective thickness of fractured position and peak load. The fractured position was the interface between joint area and not joint area. Also the strength efficiency compared with base metal was lower than decreasing rate of thickness because the hardness was decreased at fractured position due to softened material.