• 제목/요약/키워드: shear strength of concrete

Search Result 1,902, Processing Time 0.027 seconds

An Experimental Study on the Shear behavior of High Strength light-aggregate Reinforced Concrete Beam (고강도 경량 콘크리트 보의 전단거동에 관한 실험적 연구)

  • 박완신;진인철;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.385-388
    • /
    • 1999
  • This study is to investigate experimentally the shear capacity of high-strength reinforced concrete beams subjected to monotonic loading. Nine reinforced concrete beams using high strength concrete $(f'c=380kg/\textrm{cm}^2)$ are tested to determine their diagonal cracking and ultimate shear capacity. The main variables are shear span-depth ratio a/d=1.5, 2.5, 3.5, and shear reinforcement ratio. All specimens are 170mm wide and have a total depth of 300mm. The test results indicate that ACI 318-95(b) Code for shear capacity gave closest agrement with the exsprimental results. The beams with a shear spear-depth ratio 1.5 and 2.5. ACI 318-95 Code underestimates shear strength carried by vertical shear reinforcements.

An Experimental Study on Shear Behaviour of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구)

  • 곽계환;고갑수;곽경헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.58-69
    • /
    • 1996
  • In recent years, the research and development about the new material proceeds rapidly and actively. In building industry, high strength concrete is of interest as a new material. Since the building structure becomes bigger, higher and more specialized, the demand of material and member with high strength expands greatly. Therefore in this experiment, cement complex with high strength was made using the condensed silica fume, a basic experiment was performed on strength property, and optimum-mixture-state was determined for manufacturing a high-strength concrete. Shear behaviour and fracture property of concrete beams with high strength were evaluated. On the whole, in spite of many researches, it is one of the difficult problems that shear fracture of concrete beams has not yet been clearly understood theoretically, and now the shear-design-standard forms in many countries are a formula based on experiment. In this study, the variable of shear behavior experiment was shear-reinforcement-ratio. By analyzing test results and comparing with computation value by ACI code, the basic data was offered on shear design of reinforced concrete beams with high strength. The effect of epoxy repair was also investigated for the beams with cracks due to flexural and shear loading.

  • PDF

Shear resistance of stud connectors in high strength concrete

  • Lee, Young Hak;Kim, Min Sook;Kim, Heecheul;Kim, Dae-Jin
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.647-661
    • /
    • 2014
  • The use of steel-concrete composite members has been significantly increased as they have the advantages of the reduction of cross sectional areas, excellent ductility against earthquake loadings and a longer life span than typical steel frame members. The increased use of composite members requires an intensive study on the shear resistance evaluation of stud connectors in high strength concrete. However, the applicability of currently available standards is limited to composite members with normal and lightweight strength concrete. In this paper, push-out tests were performed on 24 specimens to investigate the structural behavior and shear resistance of stud connectors in high strength concrete. Test parameters include the existence of shear studs, height to diameter ratio of a shear stud, its diameter and concrete cover thickness. A shear resistance equation of stud connectors is proposed through a linear regression analysis based on the test results. Its accuracy is compared with those of existing shear resistance equations for studs in normal and lightweight concrete.

Direct Shear Test of Retrofit Anchors Using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yong-Gon
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2000
  • A new type of retrof=t anchor bolt that uses deformed reinforcing bars and a commercial adhesive was developed and then an experimental study was carried out to determine the behavior of the anchors in direct shear. The steel-to-concl몫ete interface was tested. Plain concrete slabs with about 20-MPa compressive strength were used for 23 direct shear tests performed Test variables were anchor diameters (D16, D22. and D29) and edge effect. Three different shear tests were completed: simple shear, edge shear where anchors were pulled against the concrete core, and edge shear where anchors were pushed against the concrete cover In the simple and the edge shear tests where the anchors were pulled against the core, the theoretical dowel strength determined by (equation omitted) was achieved but with relatively large displacements. The shear resistances increased with the increasing displacements. In the edge shear test where the anchors were pushrd against the cover, the peak shear strengths signif=cantly lower than the theoretical dowel strength were determined due to cracks developed in concrete when the edge distance was 80 mm. The peak strengths were about 50% of the dowel strength for Dl6 bar. and about 25% or less of the dowel strength for D22 and D29 bars. Test results revealed that the edge shear where the anchor was pushed against the cover controled.

  • PDF

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate (석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능)

  • Chung, Soo-Young;Yun, Hyun-Do;Park, Wan-Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

An Experimental Study on the Shear Behavior of Reinforced High-Strength Concrete Beams with Belite Cement (Belite 시멘트를 사용한 고강도 철근콘크리트 보의 전단거동에 관한 실험연구)

  • 한상훈;구봉근;김동석;강지훈;이상근;홍기남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.463-468
    • /
    • 1998
  • This paper presents the shear behavior in reinforced normal and high-strength concrete beams with Belite cement due to the increase of concrete compressive strength. The shear tests were conducted on thirty two beam specimens having concrete compressive strengths of 350 and 600kg/$\textrm{cm}^2$. The major experimental variables are compressive strength of concrete, shear span to depth ratio, and shear reinforcement ratio. The shear responses as to each variable are discussed in terms of shear capacity. The comparison of prediction equations with test results is also presented.

  • PDF

Size Effects in Shear Strength of Reinforced Concrete Beams without Web Reinforcement (스터럽이 없는 철근콘크리트 보의 전단강도에서의 크기효과)

  • 송하원;하주형;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.179-190
    • /
    • 1998
  • Shear failure of reinforced concrete (RC) beams is serious problem due to sudden brittle failure and many experimental results proved that size effect in shear strength of RC beams is an important feature of reinforced concrete members. As the sizes of RC beams very large, experiments sometimes become very difficult so that empirical design formula or the experimental data on shear strength of RC beams could not be obtained. Then the numerical analyses for size effect on shear strength of RC beams become very important. In this study, finite-element technique of reinforced concrete is employed of shear analysis of RC beams without web reinforcement and the size effects in shear strength are numerically analyzed. The influencing factors to the size effect in the shear strength of RC beams are extensively analyzed and compared with those by major shear strength equations including several standard specifications.

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang;Zhou, Xuhong;Liu, Jiepeng;Wang, Xuanding
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.411-422
    • /
    • 2019
  • Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.

Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results

  • Shuraim, Ahmed B.;Aslam, Fahid;Hussain, Raja R.;Alhozaimy, Abdulrahman M.
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.739-760
    • /
    • 2016
  • This paper reports on punching shear behavior of reinforced concrete panels, investigated experimentally and through finite element simulation. The aim of the study was to examine the punching shear of high strength concrete panels incorporating different types of aggregate and silica fume, in order to assess the validity of the existing code models with respect to the role of compressive and tensile strength of high strength concrete. The variables in concrete mix design include three types of coarse aggregates and three water-cementitious ratios, and ten-percent replacement of silica fume. The experimental results were compared with the results produced by empirical prediction equations of a number of widely used codes of practice. The prediction of the punching shear capacity of high strength concrete using the equations listed in this study, pointed to a potential unsafe design in some of them. This may be a reflection of the overestimation of the contribution of compressive strength and the negligence of the role of flexural reinforcement. The overall findings clearly indicated that the extrapolation of the relationships that were developed for normal strength concrete are not valid for high strength concrete within the scope of this study and that finite element simulation can provide a better alternative to empirical code Equations.