• Title/Summary/Keyword: shear ring

Search Result 132, Processing Time 0.038 seconds

Natural Vibration Analysis of Thick Rings (두꺼운 링의 고유진동 해석)

  • Park, Jung-Woo;Kim, Sehee;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1186-1194
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

Effects of Blankholding force and Vee-ring on the Blanking Characteristics in Fine-Blanking Die (정밀전단금형에서 판누름압력과 삼각돌기가 전단특성에 미치는 영향)

  • 이종구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.188-193
    • /
    • 1996
  • This study was performed the blankholding force and vee-ring effects on Blanking characteristics, such as maximum blanking force, burnish, dish-shape, hardness. etc, in fine-blanking die by the experimental method. Two types of aluminum (Al. 1050-0, Al 5052-H) Such as annealed and unannealed materials were used for the experiment. In order to get a hydrostatic pressure effect, the clearance was set to 0.5% of the thickness of strip, and the counter punch and stripper plate with Vee-ring was set-up. While this experiment was carrying out, the average blanking Velocity was constant (37.5mm/sec) As a result of this study, we got a good surface roughness and a glassy shear plane(burnish) of the sheet over 90% thickness, and such as the excellent accuracy of dimensions, the good squareness and the reduction of dish-shape could be obtained, and also the additional results obtained were such that the hardness of shear plane was increased and the maximum blanking force was reduced in the condition of Vee-ring height of 1.0~1.5mm, and blankholding force of 1200kg.

  • PDF

The Structural Analysis of Wedge Joint in Composite Motor Case (복합재 연소관의 쐐기형 체결부 구조 해석)

  • 황태경;도영대;김유준
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.64-73
    • /
    • 2000
  • The joint parts was composed of inner AL(aluminum) ring, FRP wedge and motor case which was manufactured by filament wound method. Where the motor case consists of helical and hoop layer. The finite element analysis was performed for the design variable of joint parts to improve the performance of motor case. Where the adhesive layer was modeled to elasto-perfect plastic material and the contact condition of AL ring and wedge was modeled by using the contact surface element of ABAQUS. And the sliding distance of AL ring and the hoop strain of composite case were compared to hydro-static test results to verify the accuracy of analysis results. When wedge and AL ring was perfect bonding, though the hoop strain of joint part was reduced, the maximum shear stress was occurred at the adhesive layer. Thus the adhesive layer had failed due to the high shear stress before the failure was occurred at the case. And as another design method, when wedge and AL ring was contact condition, the shear stress on adhesive layer was decreased. But the hoop stress of joint part increased due to the sliding behavior of AL ring. Finally, the fail was occurred at the composite case of joint part. The improved joint method reinforced by hoop layer to the joint parts under contact condition for wedge and Al. ring reduced the joint part's hoop strain by constraint the sliding behavior of AL ring.

  • PDF

A study on the flexural virations for the ring with symmetrical cross section (대칭단면 원환부품의 평면진동에 관한 연구)

  • 김광식;김강년
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.56-62
    • /
    • 1984
  • Various automotive and machine parts are having the shape of circular ring and the study and the verification of its dynamic characteristics can be the important basis of quality control and improvement of performance of inner and outer race of ball and roller radial bearing, ring gear, seal, etc. In this study, three separate sets of governing equations on the flexural vibration of circular ring were formulated each considering the effects of viscous damping, rotatory inertia and shear deformation, and three frequency formulas were derived. Numerical values of frequencies of circular and rectangular cross section ring were tabulated and compared with experimental value. Some important parameters were found in the ring vibration characteristics.

  • PDF

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Dong-Seok;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.314-323
    • /
    • 2010
  • Recently, granular soils having a large particle size are frequently used as a filling material in the construction of foundation, harbor, dam, and so on. The shear behavior of this granular soil plays a key role in the stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause the disturbance of ground characteristics and consequently induce an issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Using the crushing model and non-crushing model which were created in this study, numerical analyses of ring shear test were conducted and their results were analyzed and compared. In general, landslide and slope stability are accompanied by a large displacement and consequently not only a peak strength but also a residual strength are very important in the analysis of landslide and slope stability. However the direct shear test which has been commonly used in the determination of shear strength parameters has a limitation on displacement therefore the residual strength parameters can not be obtained. The characteristics of residual shear behavior were investigated through the numerical analyses in this study.

  • PDF

Roughness Effect on the Residual Shear Characteristics of Jumunjin Sands (거칠기 효과를 고려한 주문진 표준사의 잔류전단강도 특성 분석)

  • Sueng-Won Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.717-724
    • /
    • 2023
  • Residual shear strength is an important parameter in landslide dynamics and may be considered the critical factor in landslide triggering. Tests were undertaken using Jumunjin sands to examine the effects of smooth and rough surfaces on ring-shear characteristics. Under dense and drained conditions, shear velocities were recorded as 0.01, 0.1, 1, 10, 50, 100 mm s-1, with shear strength increasing with velocity and producing increasingly fine content. Particle fragmentation may thus increase landslide mobilization when the landslide body is mixed with ambient water in channelized flows.

Natural Vibration Analysis of Thick Rings (두꺼운 링의 고유진동 해석)

  • Kim Chang-Boo;Park Jung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.459-466
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

  • PDF

Forced Vibration of a Circular Ring with Harmonic Force (조화력에 의한 원환의 강제진동)

  • Hong, Jin-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.123-128
    • /
    • 2005
  • Forced vibration of a thin circular ring with a concentrated harmonic force is analyzed when the ring is free and has only the in-plane motion. Using the unit doublet function for external force, the governing equation is obtained and is solved by the use of Laplace transform. The exact solutions of displacement components and bending moment are obtained. In order to verify the solutions of analysis, finite element analysis is performed and the results shows good agreement. Then, frequency response curves for displacement and bending moment are obtained. In deriving the governing equations and the solutions, nondimensional parameter of the exciting frequency and the magnitude of exciting force are extracted. As the displacement components are obtained, the remaining bending strain, slope, curvature, shear force, etc. can also be derived. With the results of this work, the responses of a free ring excited on multiple points with different frequencies can also be obtained easily by superposition.

A Study on the Ring Effects of Composite Laminated Conical Shells (복합적층 원뿔형 쉘의 링 보강효과 연구)

  • Park, Weon-Tae;Choi, Jae-Jin;Son, Byung-Jik
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.94-101
    • /
    • 2004
  • In this study, composite laminated conical shells with ring stiffeners are analyzed. A versatile 4-node shell element which is useful for the analysis of conical shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. The proposed element has six degrees of freedom per node and permits an easy connection to other types(beam element) of Optimum location and optimum section properties of ring stiffeners are obtained. It is shown that the thickness of conical shell is reduced about 20% by optimum ring stiffeners.

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.