• Title/Summary/Keyword: shear resisting force

Search Result 111, Processing Time 0.026 seconds

Seismic Behaviour of Exterior Joints in Post-Tensioned Flat Plate Systems (포스트 텐션 플랫 플레이트 외부 접합부의 내진 거동)

  • Han, Sang-Whan;Kee, Seong-Hoon;Kang, Tomas H.K.;Cho, Jong;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.595-602
    • /
    • 2006
  • An experimental study was conducted to investigate seismic behaviour of post-tensioned(PT) exterior slab-column connections used for the purpose to resist gravity loads only. For these, 2/3-scale, two PT post-tensioned exterior connections with two different tendon arrangement patterns and one conventional reinforced concrete(RC) exterior connection was tested under quasi-static, uni-directional reversed cyclic loading. During the lateral testing, gravity forces transferred to the column were kept constant to closely simulate a moment to shear ratio of a real building. One of the objectives of this study was to assess the necessity and/or the quantity of bottom bonded reinforcement needed to resist moment reversal which would occur under significant inelastic deformations of the adjacent lateral force resisting systems. The ACI 318 and 352 provisions for structural integrity were applied to provide the bottom reinforcement passing through the column for the specimens. Prior test results were also collected to conduct comparative studies for some design parameters such as the tendon arrangement pattern, the effect of post-tensioning forces and the use of bottom bonded reinforcement. Consequently, the impact of tendon arrangement on the seismic performance of the PT connection, that is lateral drift capacity and ductility, dissipated energy and failure mechanism, was considerable. Moreover, test results showed that the amount of bottom reinforcement specified by ACI 352. 1R-89 was sufficient for resisting positive moments arising from moment reversal under reversed cyclic loads. Shear strength of the tested specimens was more accurately predicted by the shear strength equation(ACI 318) considering the average compressive stress over the concrete($f_{pc}$) due to post-tensioning forces than that without considering $f_{pc}$.

Pilot Study on the Shear Strengthening Effect of Concrete Members Reinforced by Kagome Truss (카고메 트러스로 보강한 콘크리트 부재의 전단 보강효과에 관한 기초 연구)

  • Kim, Woo;Kang, Ki-Ju;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.237-244
    • /
    • 2012
  • There is mounting recognition among concrete researchers that fiber reinforcement makes up for the inherent weakness in resisting tensile force of structural concrete. In practice of application of the fiber to concrete, however, several problems still remain to solve for assuring a uniform mix quality. The Kagome truss that is widely used in mechanical engineering field seems to be a good replacement for the steel fiber. This paper presents the test results of a pilot study for the concrete members reinforced by Kagome truss which is a periodic cellular metal of wire-woven. Three types of Kagome truss bulk were prefabricated and filled with normal concrete to make small-scaled test beams. The beams reinforced by a normal steel stirrups were also tested up to failure to compare the behavioral results. From the results obtained, it is appeared that comparing with beams reinforced by normal stirrups, the beams reinforced by Kagome truss showed better performance in load carrying capacity as well as ductility. Therefore, the Kagome truss is proved to be a good web shear reinforcing material.

3-D Slope Stability Analysis on Influence of Groundwater Level Changes in Oksan Landslide Area (지하수위 변화에 따른 옥산 산사태 지역의 3차원 사면안정성 해석)

  • Seo, Yong-Seok;Kim, Sung-Kwon;Lee, Kyoung-Mi
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In the study, we carried out a 3-D analysis to assess the influence of groundwater level changes on the slope stability, conducting a series of back-numerical analysis to delineate the critical line of the shear strength of the failure surface of a landslide, and a laboratory test to determine the geo-mechanical properties of soil samples. The analysis result shows that the shear strength determined by the laboratory test was distributed below the critical line of shear strength estimated by back-analysis. Differences between driving and resisting force were also analyzed in groundwater conditions of dry and saturation. It appeared that the stress gets greater towards the slope center of the landslide, and the debris mass moves downwards. According to the analysis, the factor of safety becomes 1 with the rise of foundwater level up to -0.85 m from the slope surface, while the slope tends to stay stable during dry seasons.

Seismic Performane Evaluation of Flat Plate System Considering Column Aspect Ratio (무량판 구조시스템 접합부의 기둥 형상비에 따른 내진 성능 평가)

  • Lee, Hyun-Ho;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.74-80
    • /
    • 2008
  • This paper evaluates seismic capacities of slab-column joints in flat plate system which has columns with various aspect ratio as experimental parameters. Continuous - bended shear reinforcements were applied for the prevention of punching shear failure in this study. The specimens of FIS1-05, FIS1-10, and FIS1-20 have the aspect ratio of 0.5, 1.0, and 2.0 respectively. Static lateral force was applied to the specimens in a horizontal direction and vertical load was applied by constant gravity load ratio. The test results were evaluated by lateral displacement and strength of slab-column joint. Consequently, the lateral resisting capacity of rectangular type column such as FIS1-05, FIS1-20 is superior to the square type column such as FIS1-10.

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

Lateral Resisting Capacity for CFT Column to RC Flat Plate Slab Connections (CFT 기둥 - RC 무량판 슬래브 접합부의 횡저항 성능)

  • Song, Jin-Kyu;Song, Ho-Beom;Oh, Sang-Won;Lee, Cheol-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.65-68
    • /
    • 2008
  • This paper verified the lateral resisting capacity of CFT column-RC flat plate connection in comparison with general RC column-flat plate connection and detected moment capacity and ductility capacity of connection according to lateral force-displacement ratio. We made and tested specimens which have different variables respectively and as a result derive a following conclusion. In CFT specimen a critical section was extended and initial stiffness and moment increased 35%, 25$^{\sim}$35% respectively in comparison to general RC column specimen. In all specimens generally shear governed behaviors and in CFT specimen complemented with seismic band, flexure behavior region of slab was extended and also ductility ratio and energy absorptance increased.

  • PDF

The Limiting Drift and Energy Dissipation Ratio for Shear Walls Based on Structural Testing (전단벽의 최소 층변위 및 에너지 소산성능)

  • ;;N.M.Hawins
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.335-343
    • /
    • 1998
  • Recently, new experimental criteria for reinforced concrete frame structures in high seismic regions have been reported in United States. The objective of the criteria is to get more reliable test data which are valid to compare with other test data done by different researchers. The criteria precribe test method of specimens, analysis method of test data, and limiting values needed to specimens like drift angle, energey dissipation ratio, stiffness, and strength. These criteria might be usefel to get objective conclusion. Shear wall structures, which belong to one of earthquake resisting systems, also need this kind of criteria. But, the general response of shear wall structures is a little bit different from that of frame structures since shear wall restrains the horizontal displacement caused by horizontal force and increases the stiffness and strength. The objective of this paper is to propose a criterion for limiting drift and energy dissipation ratio of shear walls based on structural testing. These are the most important values for presenting the capacity of shear walls. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to the results for a suggested acceptance criteria that involve a limiting drift that is a function of aspect ratio and a limiting energy dissipation ratio that is a function of displacement ductility and damping.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

A basic study on Visual judgment method for the Dent of Lightweight wall surface (경량벽체 표면의 패임에 대한 시각적 판단방법에 관한 기초적 연구)

  • Kim, Jin-Sik;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.36-37
    • /
    • 2015
  • Recently, there has been a rapid increase in demand for lightweight walls for their use as interior partitions, as types of structure have gradually changed from shear wall structures to column structures or flat plate column wall systems. The lack of resisting force in lightweight walls is found by measuring the depth of dents in impact resistance tests, but it is not a direct factor of impact resistance. However, in the user's position, dents of over a certain size are clearly a factor that visually reminds the need for repair. In this study, we reviewed relative methods of assessment of the need for repair based on the visual means of determination (sensory test) on the dents on lightweight walls. Dents were found to stand out starting from depths of about 4mm, and the depth of roughly 5mm was found to be the criterion for determining the necessity of repair for men, while it was 4mm for women.

  • PDF

Seismic behavior of interior RC beam-column joints with additional bars under cyclic loading

  • Lu, Xilin;Urukap, Tonny H.;Li, Sen;Lin, Fangshu
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.37-57
    • /
    • 2012
  • The behavior of beam-column joints in moment resisting frame structures is susceptible to damage caused by seismic effects due to poor performance of the joints. A good number of researches were carried out to understand the complex mechanism of RC joints considered in current seismic design codes. The traditional construction detailing of transverse reinforcement has resulted in serious joint failures during earthquakes. This paper introduces a new design philosophy involving the use of additional diagonal bars within the joint particularly suitable for low to medium seismic effects in earthquake zones. In this study, ten full-scale interior beam-column specimens were constructed with various additional reinforcement details and configurations. The results of the experiment showed that adding additional bars is a promising approach in reinforced concrete structures where earthquakes are eminent. In terms of overall cracking observation during the test, the specimens with additional bars (diagonal and straight) compared with the ones without them showed fewer cracks in the column. Furthermore, concrete confinement is certainly an important design measure as recommended by most international codes.