• 제목/요약/키워드: shear resisting force

검색결과 111건 처리시간 0.032초

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

플랜트 설비 지지용 대안 강구조 시스템의 내진성능 (Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure)

  • 곽병훈;안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

휨 저항을 고려한 네일 거동에 대한 수치해석적 분석 (Numerical Analysis of the Nail Behavior Considering Resisting Bending Moment)

  • 전상수;김두섭;장양원
    • 한국지반공학회논문집
    • /
    • 제23권10호
    • /
    • pp.85-96
    • /
    • 2007
  • 쏘일 네일 공법은 기존의 지보공법에 비해 시공의 편리성과 경제성, 안정성이 우수하여 최근 현장에 적용되는 사례가 증가하고 있다. 하지만, 쏘일 네일 공법에 대한 공학적인 접근은 미흡하여 우리나라에서는 지금까지 체계적인 설계 공법이 확립되지 못한 실정이다. 기존의 쏘일 네일 공법 설계에는 네일에 작용하는 전단 저항 및 휨 저항을 고려하지 않았으나, 철근과 시멘트로 구성된 쏘일 네일은 전단 및 휨에 대한 저항을 가지고 있다. 따라서, 본 논문에서는 네일의 전단 및 휨 저항을 고려한 쏘일 네일 보강시 수치해석 프로그램인 $FLAC^{2D}$를 이용해 사면의 안정성을 분석하였다.

중층 종합병원 건물의 내진성능평가 (Seismic Performance Evaluation of a Mid-rise General Hospital Building)

  • 김태완;추유림;김승래
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.245-254
    • /
    • 2017
  • The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.

KBC2008(안)에 근거한 무량판구조의 횡력저항시스템 (Lateral Force Resisting System of Flat Plate Structure based on KBC 2008 Draft)

  • 김도현;이현호;김영식;우성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.871-874
    • /
    • 2008
  • KBC 2005를 처음 적용할 때 많은 구조엔지니어들이 무량판 구조에 대한 횡력저항시스템 선정과이에 따른 상세적용에 많은 어려움이 있었다. 현재 KBC 2005에 대한 개정작업이 진행중에 있다. 이러한 시점에서 최근 개정 중인 건축구조기준의 개정안을 토대로 향후 개정안에 적용가능한 구조시스템을 미리 살펴볼 필요가 있다. KBC 2008(안)의 경우 내진설계범주에 따른 시스템의 높이제한, 특수전단벽과 같은 특수상세, 전단벽-골조 상호작용시스템과 같은 새로운 시스템의 도입으로 구조설계자가 현행 기준보다 시스템에 대하여 휠씬 더 다양한 선택이 가능할 것으로 판단된다.

  • PDF

경량콘크리트를 사용한 철선일체형 바닥구조의 휨내력 및 전단내력 실험적 평가 (An Experimental Evaluation of Bending and Shear Resisting Strengths for Wire-Integrated Deck Plate System using Lightweight Concrete)

  • 이성희;방중석;원용안;류재용;최성모
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.275-282
    • /
    • 2011
  • 최근 내진설계의 발달과 친환경 건설자재에 대한 관심으로 건물의 자중을 줄이기 위한 경량콘크리트에 대한 관심이 높아지고 있으며, 증축건물을 중심으로 경량콘크리트를 이용한 설계가 점차 증가하는 추세에 있다. 따라서 본 연구는 철선일체형 데크플레이트와 경량콘크리트를 사용한 바닥구조시스템의 휨내력과 전단내력을 평가하기 위해 하부 강판 플레이트의 설치유무를 변수로 4개의 실험체를 제작하여 구조실험을 수행하였다. 이를 통해 경량콘크리트를 이용한 합성바닥구조의 구조성능은 KCI(2007)의 설계기준을 만족하는 것으로 나타났다.

포스트 텐션 플랫 플레이트 슬래브 접합부의 거동 (Structural Behavior of Post-Tensioned Flat Plate Slab-Column Connections)

  • 조경현;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.53-56
    • /
    • 2004
  • Recently, post tension flat plate slab system is widely used for a new slab structural system. Slab-column connections may fail in brittle manner by punching shear. Flat plate slabs have been widely used for gravity load resisting system in buildings. Lateral resistance usually provided by shear walls or moment resisting frames. Since plat plates move together with lateral loading system during earthquake or wind, it is important to evaluate the gravity resistance under a drift experienced by lateral force resisting system during either design earthquake or wind. Thus, this study investigated post tension flat plate slab systems whether they have sufficient strength and deformability to resist gravity loads during specified drift levels. Experimental research was carried out.

  • PDF

내진 보강된 철골모멘트골조의 취약성 등고선을 통한 성능평가 (Performance Evaluation of Steel Moment Resisting Frames with Seismic Retrofit Using Fragility Contour Method)

  • 김수동;이기학;정성훈;김도현
    • 한국지진공학회논문집
    • /
    • 제17권1호
    • /
    • pp.33-41
    • /
    • 2013
  • Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.

유리섬유로 보강한 조적벽체의 전단내력식 설정에 관한 연구 (Proposing the Shear Force Equation of GFRP Strengthened Masonry Wall)

  • 권기혁;이수철;정원철
    • 한국방재학회 논문집
    • /
    • 제7권1호통권24호
    • /
    • pp.1-9
    • /
    • 2007
  • 본 연구는 국내에 시공된 조적조 건축물의 특징을 반영한 조적벽체의 반복가력과 모의진동대 실험을 통해 얻어진 결과를 근거로 하여 유리섬유로 보강된 보강조적벽체의 전단내력식을 제안하는 것을 목적으로 한다. 실험결과, 개구부가 없는 조적벽체의 파괴를 지배하는 모드는 Rocking이였고, 개구부가 있는 경우는 개구부 주변에 균열이 집중되었다. 비보강 조적벽체의 전단내력식은 UBC에서 제시한 식이 실험과 가장 유사한 값을 보였다. 본 연구를 통해 제안되어지는 유리섬유 보강조적벽체의 전단내력식은 다음과 같다. $$V_n=0.02A_n{\sqrt{f'_m}}+0.022b_gh_g(1+2{\alpha})^3{\sqrt{f_g}}(N/mm^2)$$.