• Title/Summary/Keyword: shear plate

Search Result 1,762, Processing Time 0.028 seconds

Comparison of Shear Strength Equation for Flat Plates with GFRP Plate (GFRP 판으로 보강된 플랫 플레이트의 전단강도식에 관한 규준의 비교 분석)

  • Kim, Min Sook;Hwang, Seung Yeon;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this study, shear test performed to investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test parameters include the distance between the column face and the first line of GFRP plate and number of GFRP plate vertical strip. The result of test showed that when number of GFRP plate vertical strip was increased, shear strength improved. The shear strength for flat plate reinforced GFRP plate in various codes including ACI 318, BS 8110, EUROCODE 2, and KCI were compared to provide more rational approach for reinforced concrete flat plates with GFRP plate.

Structural Behavior in Slab-Column Connections with Shear Plate Using Structural Experiment and Non-destructive Test, Spectral Analysis of Surface Waves (구조 실험과 SASW를 이용한 플랫 플레이트 기둥-슬래브접합부에서의 구조적 거동에 관한 연구)

  • Joo, Hyun-Jee;Cho, Young-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.48-51
    • /
    • 2004
  • This paper is to study the response of flat plate slab-column connections consisting of various types of shear reinforcement and steel plate subjected to gravity loadings, mainly punching shear forces using the non-destructive testing, spectral analysis of surface waves and structural experiments. The base specimen failed due to punching shear generated from the gravity. The three other types of slab shear reinforcement and steel plate showed effective in resisting punching shear for these types of connections under gravity loading. This study has focused in evaluating the velocity response of a Surface wave during the early age as the poured concrete specimens have been hardened, the possibility of damage detection in the slab-column connection and the relationship between the punching shear forces and the surface wave velocities under the condition that the punching shear forces had gradually increased until the flat plate slab in slab-column connection had been failed.

  • PDF

Ductility of Column-Slab eoint in R/C Flat Plate System (플랫 플레이트 구조의 기둥.슬래브 접합부 연성에 관한 연구)

  • 김형기;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.113-119
    • /
    • 2000
  • The R/C flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problems in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab joint. Recently, the flat plate system accompanied with shear walls to resist the lateral loads is applied to high-rise buidings. Although the flat plate system is not considered in design as part of the lateral load-resisting system, it is required that this system keeps the ductile behavior for the lateral displacement of the building. However, it is unclear whether the column-slab joint possesses ductility enough to survive the lateral deformation. The objective of this paper is to investigate the major parameters that influence the ductility of R/C flat plate system by examining the existing experiments on column-slab joint. The effects of gravity load and shear reinforcement on the ductility of the flat plate system are presented.

Shear Reinforcement for Flat Plate-Column Connections using Lattice Bars (래티스형 철근을 이용한 무량판 구조의 접합부 전단보강)

  • 안경수;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • In flat-plate floors, slab-column connections are broken down with a brittle shear failure. And it can cause the collapse of the whole structures. Thus, the proper method of shear reinforcement in flat plate-column connections must be required. The objective of this study is to compare shear reinforcement specimens using lattice bars to no shear reinforcement specimens in view of shear strength and ductility of the flat plate-column connections. The test results have shown that shear reinforcement specimens varying $\rho$, $b_0$/d and $C_1$/$C_2$ increase in shear strength by 36.85% and in ductility by 9.16 for no shear reinforcement specimens on the average. This results confirm the effectiveness of this type of shear reinforcement in improving shear strength and ductility.

  • PDF

A Study of Shear Reinforcement for Slab-Column Connection (슬래브-기둥 접합부의 전단보강상세에 관한 연구)

  • Baek, Sung-Woo;Kim, Jun-Seo;Choi, Hyun-Ki;Choi, Chang-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.37-40
    • /
    • 2008
  • The study is an experimental test on full-scale flat plate slab-column interior connection. The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. For making sure of the punching shear capacity, developed for shear reinforcement in slab-column connection, the structural test is performed. The dimension of the slabs was 2620*2725*180mm with square column (600*800mm). The slabs were tested up to failure monotonic vertical shear forces. The presences of S/S bar and wire mesh substantially increased the punching shear capacity and the ductility of the slab-column connections.

  • PDF

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.

Shear response of lean duplex stainless steel plate girders

  • Armoosh, Salam R.;Khalim, A.R.;Mahmood, Akram Sh.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1267-1281
    • /
    • 2015
  • Carbon steel plate girders have been used on a large scale in the building industry. Nowadays, Lean Duplex Stainless Steel (LDSS) plate girders are gaining popularity as they possess greater strength and are more impervious to corrosion than those that are constructed from carbon steel. Regardless of their popularity, there is very limited information with regards to their shear behavior. In this paper, the non-linear finite element analysis was employed to investigate the shear behavior of LDSS plate girders. Parameters considered were the web thickness, the flange width, and the girders aspect ratio. The analysis revealed that although the shear behavior of the LDSS girders was no different from that of carbon steel plate girders, it had obviously been affected by the non-linearity of the material. Furthermore, the selected parameters were found to pronounce effect on the shear capacity of the LDSS girders. That is, the shear capacity increased considerably with web thickness, and increased slightly with flange width. However, it was reduced as the aspect ratio increased. Comparisons between the finite element analysis failure loads and those predicted by the current European Code of Practice revealed that the latter underestimated the shear strength of the LDSS plate girders.

Nonlinear seismic performance of code designed perforated steel plate shear walls

  • Barua, Kallol;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.85-98
    • /
    • 2019
  • Nonlinear seismic performances of code designed Perforated Steel Plate Shear Walls (P-SPSW) were studied. Three multi-storey (4-, 8-, and 12-storey) P-SPSWs were designed according to Canadian seismic provisions and their performance was evaluated using time history analysis for ground motions compatible with Vancouver response spectrum. The selected code designed P-SPSWs exhibited excellent seismic performance with high ductility and strength. The current code equation was found to provide a good estimation of the shear strength of the perforated infill plate, especially when the infill plate is yielded. The applicability of the strip model, originally proposed for solid infill plate, was also evaluated for P-SPSW and two different strip models were studied. It was observed that the strip model with strip widths equal to center to center diagonal distance between each perforation line could reasonably predict the inelastic behavior of unstiffened P-SPSWs. The strip model slightly underestimated the initial stiffness; however, the ultimate strength was predicted well. Furthermore, applicability of simple shear-flexure beam model for determination of fundamental periods of P-SPSWs was studied.

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.

Evaluation of Shear Strength for Wide Beam using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 넓은 보의 전단성능 평가)

  • Jo, Eunsun;Choi, Jin Woong;Kim, Min Sook;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In this paper, an experimental evaluation of shear strength of wide beam is presented. By the experiment in paper, shear strength depending on parameter of shear reinforcement by GFRP plate on wide beam is investigated. Specimens are 7 of reinforced by GFRP plate with openings. The shear reinforcement is manufactured into plate shape with openings to ensure perfect integration with concrete. The test was performed on 7 specimens. The parameters are including number of shear reinforcement by GFRP plates and center-to-center spacing between vertical strip. We analysed the crack, failure mode, strain, shear strength of specimens. A calculation of the shear strength of reinforced wide beam with GFRP plate based on ACI 318-11. The result of the experiment shows that the GFRP plate is works successfully as shear reinforcement in the wide beam.