• Title/Summary/Keyword: shear parameter

Search Result 902, Processing Time 0.028 seconds

Flexural and Shear Strength of RC Deep Beams related to Anchorage Failure (정착파괴가 관련된 깊은 보의 휨-전단 강도에 관한 연구)

  • 김대진;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.609-612
    • /
    • 1999
  • This study presents the plastic analysis for the flexural and shear strength of RC beams related to anchorage failure. Five failure mechanisms based on the upper bound solution were constructed and the ultimate strength equations were formulated from them. The parametric study herein was carried out to observe the variation of the controlling failure mechanism depending on the parameters in the ultimate strength equations. The results of the parametric study show that controlling failure mechanism and ultimate strength are determined through the interaction of each parameter. This indicated that respective structural configuratins must be treated in a unified manner. Additionally this study proposes the scope of the parameter to induce the flexural of RC deep beams.

  • PDF

Strength Parameter (c,ø) and Dilatancy Correction of Undisturbed Weathered Granite Soil (불교란 화강토의 강도정수 (c,ø) 및 Dilatancy 보정)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.106-114
    • /
    • 2000
  • In order to evaluate the shear characteristics of undisturbed weathered granite soil which is a typical residual soil in Korea, the mechanical properties are first investigated and discussed by carrying out a series of direct shear test and then dilatancy correction is performed by using Taylor’s correction equation. In this study, specimens are sampled at Pungam(-3, -8, -13m below ground surface), Kwangju and Iksan(-5m below ground surface), Jeonbuk. The test results are summarized as follows: 1) Mohr-Coulomb failure criterion is not linear under the low confining pressure. 2) The value of cohesion is smaller than usually determined value in low pressure region. 3) The value of strength parameter c and ø which are corrected by Taylor’s correction equation is a little bit small.

  • PDF

Investigation of the performance of externally collared RC short columns via aspect ratio

  • Dirikgil, Tamer;Dugenci, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.277-287
    • /
    • 2018
  • This paper presents the experimental study of nine pieces of reinforced concrete (RC) short columns. RC short columns were tested with cyclic loading with displacement control under the influence of constant axial load with load index of 0.2. Three columns within the tested nine columns are reference columns which have the details of the reinforcement given in the modern regulations and six of them are 150 mm and 100 mm externally collared columns. In addition to the parameter of the collar spacing, aspect ratio (as=2-1.5-1) is also considered as a parameter. The data obtained from experimental results have shown that externally collar contributes significantly to increasing the shear resistance of RC short columns and limiting the shear dominant behavior. It has been observed that the effectiveness of the externally collar increases with the decrease of the aspect ratio.

Dispersion of shear wave in a pre-stressed hetrogeneous orthotropic layer over a pre-stressed anisotropic porous half-space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.951-972
    • /
    • 2016
  • The purpose of this study is to illustrate the propagation of the shear waves (SH-waves) in a prestressed hetrogeneous orthotropic media overlying a pre-stressed anisotropic porous half-space with self weight. It is considered that the compressive initial stress, mass density and moduli of rigidity of the upper layer are space dependent. The proposed model is solved to obtain the different dispersion relations for the SH-wave in the elastic-porous medium of different properties. The effects of compressive and tensile stresses along with the heterogeneity, porosity, Biot's gravity parameter on the dispersion of SH-wave are shown numerically. The wave analysis further indicates that the technical parameters of upper and lower half-space affect the wave velocity significantly. The results may be useful to understand the nature of seismic wave propagation in geophysical applications and in the field of earthquake and material science engineering.

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

Free Vibrations of Horizontally Noncircular Curved Beams resting on Pasternak Foundations (Pasternak 지반위에 놓인 변화곡률 수평 곡선보의 자유진동)

  • Lee, Byoung-Koo;Park, Kwang-Kyou;Oh, Sang-Jin;Jin, Tae-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.706-711
    • /
    • 2000
  • This paper deals with the free vibrations of horizontally curved beams on an elastic foundation. Taking into account the effects of rotatory inertia and shear deformation, the differential equations governing free vibrations of noncircular curved beams resting on Pasternak-type foundations are derived and solved numerically. The lowest three natural frequencies for parabolic curved beams with hinged-hinged and clamped-clamped end restraints are calculated. Numerical results are presented to show the effects on the natural frequencies of the non-dimensional system parameters: the horizontal rise to span length ratio, the Winkler foundation parameter, the shear foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.911-930
    • /
    • 2016
  • The main purpose of this paper is to study the effects of initial stress, gravity, anisotropy and porosity on the propagation of shear wave (SH-waves) in a fiber-reinforced layer placed over a porous media. The frequency equations in a closed form have been derived for SH-waves by applying suitable boundary conditions. The frequency equations have been expanded and approximated up to $2^{nd}$ order of Whittaker's function. It has been observed that the SH-wave velocity decreases as width of fiber-reinforced layer increases. However, with the increase of initial stress, gravity parameter and porosity, the phase velocity increases. The results obtained are in perfect agreement with the standard results investigated by other relevant researchers.

Wave propagation of FG polymer composite nanoplates reinforced with GNPs

  • She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • This study examines the wave propagation of the functionally graded polymer composite (FG-PC) nanoplates reinforced with graphene nanoplatelets (GNPs) resting on elastic foundations in the framework of the nonlocal strain gradient theory incorporating both stiffness hardening and softening mechanisms of nanostructures. To this end, the material properties are based on the Halpin-Tsai model, and the expressions for the classical and higher-order stresses and strains are consistently derived employing the second-order shear deformation theory. The equations of motion are then consistently derived using Hamilton's principle of variation. These governing equations are solved with the help of Trial function method. Extensive numerical discussions are conducted for wave propagation of the nanoplates and the influences of different parameters, such as the nonlocal parameter, strain gradient parameter, weight fraction of GNPs, uniform and non-uniform distributions of GNPs, elastic foundation parameters as well as wave number.

Free Vibrations of Double Hinged Curved Beams with Clothoid Transition Segment (Clothoid 완화곡선을 갖는 양단회전 곡선보의 자유진동)

  • 이병구;진태기;최규문;김선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.391-397
    • /
    • 2001
  • This paper explores the free vibrations of double hinged curved beams with transition segment. In this study, the clothoid curve is chosen as the transition segment of beams. The differential equations governing free vibration of such beams are derived in which the effects of rotatory inertia and shear deformation are included. The Runge-Kutta method and Determinant Search method are used to perform the integration of differential equations and to compute natural frequencies, respectively. In numerical examples, the double hinged end constraint is considered. The lowest four natural frequencies are presented as functions of three non-dimensional system parameters: the slenderness ratio, shear parameter and stiffness parameter.

  • PDF

Wave-Current Friction in Rough Turbulent Flow (전난류에서 파랑과 해류의 마찰력)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.226-233
    • /
    • 1994
  • The present paper considers the method to estimate the bottom friction driven by waves and current on rough turbulent flow. Parameter adjusting technique is suggested for the computation of bed shear stress driven by uni-directional flow. and the value of parameter is determined by comparing the computational results against Bijker's laboratory data. For the computation of combined flow bottom shear stress, two methods are presented; one is the modified Bijker approach (BYO Model) and the other is the modified Fredsoe approach (FY Model). both of which are refined by the present writer. Both models are again refined in two aspects, and tested against the Bijker's laboratory data.

  • PDF