• Title/Summary/Keyword: shear mode

Search Result 1,283, Processing Time 0.023 seconds

DYNAMIC CHARACTERISTICS OF ANCIENT MASONRY CASTLE WALLS

  • SungMinLee;SooGonLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.71-77
    • /
    • 2003
  • Generally the dynamic characteristics of stone wall structures depend on several factors such as contact, the type of interlocking bonding stones, and the filling materials. This paper describes a non-destructive technique for diagnosis of historic masonry stone structures using the measurement of natural frequency technique. For this purpose, the castle wall of Nag-An Folk Town located in Sunchon, Korea was selected as a model. The Nag-An Town Castle is one of the well maintained historical remains constructed in the Chosun Kingdom of Korea. The construction started in 1397 A.D and was finished in 1626 A.D. The non-mortar castle wall is 1470m long and the average height is 4m with a width of 3 4m. The exterior of the wall is bonded with 1 2 m rectangular rough-faced stone and the inside of the wall is filled with gravel. The traditional village still remains inside the Nag-An Town Castle, and they have a regional food festival every October. Transverse vibrations were measured at 8 points around the castle. The measured natural frequency of the first mode was 26Hz 41Hz, and the shear modulus of filling material was 2.142 x $10^3$ ~ 8.915 x $10^3$kgf/$cm^2$ . With these results, it may be assumed that the filling material is gravel or a sand-gravel mixture. It is expected that the information provided by this paper will be useful for addressing the maintenance problems of the old castle walls.

  • PDF

Comparative Study on Material Constitutive Models of Ice (얼음의 재료 모델 적용 타당성 연구)

  • Choung, Joon-Mo;Nam, Ji-Myung;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

A computational analysis of the scarf angle on a composites repair

  • Kim, Yun-Hae;Jo, Young-Dae;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • This study examined the relationship between the scarf angle and stress distribution, and estimated the strength recovery via a finite element analysis. The following conclusions were drawn from this study. Resin will fracture due to a tensile load with a high scarf angle, which is similar to the patch repair method. An applied stress can be loaded to a repaired laminate if the scarf angle is $5^{\circ}$. The Von-Mises stress increases with decreasing scarf angle, with the exception of a scarf angle of $30^{\circ}$, where the scarf angle can indicate the rates of shear and normal stresses. Strength recovery can be better if the scarf angle is decreased to a lower angle. However, scarf machining requires more time, a high skill level and considerable expense. Therefore, a scarf angle of $5^{\circ}$ is the most effective for a repair. These results may provide a guide for engineers wishing to formulate a standard for repair. The scarf angle needs to be carefully managed for a more efficient composite repair.

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

A Study on the Characteristics of PCN-PZT Piezoelectric Acceleration Sensor (PCN-PZT 압전형 가속도센서의 특성에 관한 연구)

  • Kim, Yeong-Deok;Kim, Gwang-Il;Jeong, U-Cheol;Go, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.354-360
    • /
    • 1999
  • PCN-PZT piezoelectric acceleration sensors of annular shear mode voltage type were fabricated and their characteristics have been investigated. Field tests are also carried out. To avoid noise problems from the environmental conditions, acceleration sensors employed solid state micro-electronics for pre-amplifier. The calibration procedures based on the principle of the comparison method were adopted for investigating the characteristics of fabricated acceleration sensors. The voltage sensitivity and resonant frequency of fabricated acceleration sensors were 83mv/g, 23kHz, respectively. The lower and upper frequency limit were 4Hz and 9kHz, respectively. The variation of the voltage sensitivity showed 10% at $-406{\circ}C\; and\; 9%\; at\; 121^{\circ}C$ compared to that of reference temperature at $40^{\circ}C$.

  • PDF

Seismic Performance Evaluation of School Buildings in Gyunggi Region Considering Seismic Hazard Map (상세재해지도를 고려한 경기지역 학교건축물의 내진성능평가)

  • Ryn, Han-Gook;Park, Tae-Won;Lee, Sang-Hyun;Chung, Lan;Cho, Seung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.66-73
    • /
    • 2009
  • Since the school buildings are generally used as public shelters when the natural disasters such as flood and earthquake occur, it must be designed to show enough structural performance when subject to earthquake. Major failure mode of the school buildings observed in past earthquakes were shear failure of column of which length is shortened by infilled masonry blocks. In this study, the seismic risk of the reinforced concrete school building structure was evaluated by using the seismic performance evaluation methods of low-story RC structures developed in Japan and the required seismic performance index which is obtained according to the KBC2008 seismic hazard map and soil types. In this paper, the seismic performance of the school building is evaluated by considering this short-column effects, building shape and deterioration.

Unsteadily Propagating Permeable Mode III Crack in Piezoelectric Materials (압전재료에서 비정상적으로 전파하는 투과형 모드 III 균열)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.985-996
    • /
    • 2012
  • An unsteadily propagating permeable crack in piezoelectric materials (PMs) under anti-plane shear mechanical loading and in-plane electric loading is studied. The equilibrium equations for a transiently propagating crack in a PM are developed, and the solutions on the stress and displacement fields for a permeable crack though an asymptotic analysis are obtained. The influences of piezoelectric constant, dielectric permittivity, time rate of change of the crack tip speed and time rate of change of stress intensity factor on the stress and displacement fields at the transiently propagating crack tip are explicitly clarified. By using the stress and displacements, the characteristics of the stress and displacement at a transiently propagating crack tip in a PM are discussed.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Free Vibration Analysis of Circular Strip Foundations (원호형 띠기초의 자유진동 해석)

  • Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.898-901
    • /
    • 2004
  • Since soil-structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil-structure interactions had been carried out. One of typical structures related to the soil-structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint, this paper aims to theoretically investigate dynamics of the circular strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out-of-plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of corresponding end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of non-linear equation.

  • PDF