• Title/Summary/Keyword: shear loads

Search Result 1,148, Processing Time 0.027 seconds

Efficient Analysis for the Hybrid Structural Systems with Upper Shear-Wall and Lower Frames (상부전단벽과 하부골조로 구성된 복합구조 시스템의 효율적 해석)

  • 장극관;안태상
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.441-451
    • /
    • 2002
  • Recently, Increasing residential-commercial buildings are composed of upper wall and lower frame type. As structural fragility, a large numbers of researchers have tried to develope the efficient analysis methods. But these studies were too theoretical and were not considered the lateral load which was required in analysing the transfer level in addition to being used nonlinear program which was difficult to use for practical design. thus, results of these studies we not appropriate to apply practical design, therefore, in this paper, the procedure of the current design practice were compared with that of used FEM method and presented new modeling method. in particular, an efficient analytical model which can be used in practical design of residential-commercial buildings for vortical and seismic loads was proposed and the usefulness of proposed model was verified.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

The Flexural Behavior including Ductility of Half Precast Concrete Slab with Welded Deformed Wire Fabric (용접철망을 사용한 반두께 P.C.슬래브의 휨 및 연성거동)

  • 이광수;최종수;조민형;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.153-160
    • /
    • 1994
  • Ten Half precast concrete slabs reinforced with welded deformed wire fabric were tested under two concentrated loads to investigate the flexural moment and ductile capacity. The test variables were the compressive strength of topping concrete, quantitative roughness, and reinforcernent ratio. The effects of each test variables were studied separately. Test results were as followings. The ultimate strength design method is applicable to predict flexural strength for Half P.C. concrete slab with welded deformed wire fabric and quantitative roughness. It is proper to consider 0.0035 strain ;is yielding stress of the welded deformed wire fabric. The ductility index of Half precast concrete slab with welded deformed wire fabric showed lower value. Therefore to enhance the ductility capacity the normal defomed bar should be used with the welded deformed wire fabric for the longitudinal reinforcement.

Nonlinear Analysis of Reinforced and Prestressed Concrete Slabs (철근 및 프리스트레스트 콘크리트 슬래브의 비선형 해석)

  • 최정호;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.223-234
    • /
    • 1996
  • The purpose of this paper is to present an analysis method by using the finite element method which can exactly analyze load-deflection relationships, crack propagations. and stresses and strains of reinforcements, tendons, and concrete in behaviors of elastic. inelastic and ultimate ranges of reinforced and prestressed concrete slabs under monotonically increasing loads. For t h i s purpose, the m a t e r i a l and geometric nonlinearities are taken into account in this study. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearities of the structure. The material nonlinearities are taken into account by comprising the tension, compression. and shear models of cracked concrete and models for reinforcements and tendons in the concrete : and also a so-called smeared crack model is incorporated. The reinforcements and t,endons are assumed to be in a uniaxial stress state and are modelled as smeared layers of equivalent thickness. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzcd and compared with experimental results. As a result, this method can successfully predict the nonlinear and inelastic behaviors throughout the fracture of reinforced and prestressed concrete slabs.

An Evaluation of Clamping Characteristics for High Strength Bolts with Variable Bolt Lengths (고력볼트 길이에 따른 체결 특성 평가)

  • Lee, Kang Min;Kim, Kang Seok;Nah, Hwan Seon;Lee, Hyeon Ju;Oh, Kyung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.127-134
    • /
    • 2011
  • It has been reported that the length parameter of high strength bolts results in the variance in tensile loads. The required turn of nut for each length is specified in AISC RCSC specification. There is no specific regulation datum about the bolt length in the two national codes and specifications in Korea. Therefore this study focused on evaluating influence of the clamping torque subjected to length parameter of high strength bolts. Two types of high strength bolt specimens were manufactured and tested; High Strength Hexagon bolt specified in ASTM A490 and Torque Shear Bolt in KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut, and the clamping force were analyzed to review whether length parameter affects on the required tensile strength. To evaluate the effects of the length parameter on the torque and turn of nut for the required strength and clamping force, statistical analysis was also carried out.

Design Method of Spread Footing of Semicircular Shape Reinforced by Geosynthetics (토목섬유로 보강된 반원형상의 확대기초의 설계법)

  • Ju, Jae-Woo;Lee, Seung-Eun;Park, Jong-Beom;Kim, Ki-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.41-48
    • /
    • 2004
  • Recently a method for increasing the bearing capacity by laying the reinforcing materials with three or four layers as a method reinforcing the ground was studied recently. The purpose of this study is to examine the method for increasing shear-strength factor of the ground by reinforcing the ground under the foundation. According a method of wrapping ground with bakk-shape or semicircle-shape by geotextile was developed in this study and it looks likes anaspect that spreading footing exits under spread footing. A simulation loading-test using Aluminum sticks was carried out in order to examine the mechanism about bearing capacity of spread footing reinforced by geotextile. Increase of ultimate bearing capacity was verified in this simulation loading-test when charging loads to spread footing, which is propose from this study, reinforced by geotextile. And moving directions of points of the ground were also checked by grid-type indication method, and the areas where plastic failure appeared were checked by B-shutter photographing.

  • PDF