• Title/Summary/Keyword: shear loads

Search Result 1,148, Processing Time 0.025 seconds

Development of Wide Connection Method for Vertical Joints of Precast Concrete Walls (프리캐스트 콘크리트 벽체 수직접합부의 광폭형 연결방식 개발)

  • Choi, Eun-Gyu;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • This research analyzed the structural efficiency and application by improving the 100 mm width vertical joint to 150 mm and developing three connection methods to reduce the difficulty in assembling and handling PC walls. Moreover, nonlinear finite analysis was used for analyzing. From the analysis results, when double width connection was applied, the PC wall showed larger load capacity and ductility due to the steel bar sharing loads efficiently. Moreover, as the dimension of loops and the number of bars increased, the maximum load capacity increased as well. Also, among the double width connections, the largest capacity showed in the order of welding, ring and C type loop. However, in case of welding type loop connection, the ring type loop is more stable due to changes in different site conditions. Therefore, thorough quality control of welding is necessary.

New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes (목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술)

  • Lewis, Christopher;Polverari, Marco
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.1-46
    • /
    • 2008
  • The ability to control filler performance and fines retention is vital in the development of both filled and non filled grades, respectively. This is very important when achieving the desired sheet structure necessary to maximize machine performance and end user demands. A narrow balance exists in attaining the desired retention and formation particularly in systems with heavier ash loads and producing paper and paper board on higher speed high shear equipment. A new generation of both cationic and anionic micropolymer technologies has been developed. These water based chemistries are volatile organic compound (VOC) and alkyphenol ethoxylate (APE) free. When these novel micropolymers are applied with linear poly-acrylamide or in conjunction with inorganic microparticle technologies (such as silica or swellable minerals), substantial increases in drainage, fibre retention and ash retention are observed. These improvements have been observed not only in high filled wood and non wood containing grades such as fine paper and super calendared sheets (SCA), but also in low filled newsprint grades. Of particular note is the drainage improvement seen with the application of the cationic micropolymers in unbleached packaging grades with poly-acrylamide.

  • PDF

Optimizing reinforced concrete beams under different load cases and material mechanical properties using genetic algorithms

  • Zhu, Enqiang;Najem, Rabi Muyad;Dinh-Cong, Du;Shao, Zehui;Wakil, Karzan;Ho, Lanh Si;Alyousef, Rayed;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.467-485
    • /
    • 2020
  • Genetic Algorithm (GA) is a meta-heuristic algorithm which is capable of providing robust solutions for optimal design of structural components, particularly those one needs considering many design requirements. Hence, it has been successfully used by engineers in the typology optimization of structural members. As a novel approach, this study employs GA in order for conducting a case study with high constraints on the optimum mechanical properties of reinforced concrete (RC) beams under different load combinations. Accordingly, unified optimum sections through a computer program are adopted to solve the continuous beams problem. Genetic Algorithms proved in finding the optimum resolution smoothly and flawlessly particularly in case of handling many complicated constraints like a continuous beam subjected to different loads as moments shear - torsion regarding the curbs of design codes.

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

Lateral Behavior and Joint Stability of Non-Welding Composite Pile (무용접 복합말뚝 수평거동특성 및 연결부 안정성 평가)

  • Ko, Jun-Young;Shin, Yun-Sup;Jeong, Sang-Seom;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.108-118
    • /
    • 2009
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile is frequently to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in engineering field, steel pile is highly used due to its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is to examine the composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile A non welding connection method is applied to this composite pile. This study had step of comparison with the result of numerical analysis after analyzing the result of field test. Numerical analysis is the process of analyzing lateral behavior of non welding composite pile. Moreover, detailed analysis was implemented in order to evaluate joint stability. As a result of the analysis, we could interpret that the stability of the connection part is ensured as seeing the smaller internal stress than approved internal stress. Based on this study, we analyzed lateral behavior of non welding composite pile, which ensured the stability of connection part.

  • PDF

Slope stabilization with high-performance steel wire meshes in combination with nails and anchors

  • Rudolf Ruegger;Daniel Flum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.3-38
    • /
    • 2000
  • Slope draperies in soil and rock are a well known method to avoid rockfalls into the roads or onto housings. Common wire mesh or a combination of wire mesh and wire rope nets are pinned to the slope by the means of fully grouted nails or anchors. Most of these installations have not been designed to stabilize the slope, but simply avoid the rocks from bouncing. The combination of soil- or rocknailing with a designable flexible facing system offers the advantage of a longterm stabilization of slopes and can replace other standard methods for slope stabilization. The capability to transfer axial and shear loads from the flexible facing system to the anchor points is most decisive for the design of the stabilization system. But the transfer of forces by mesh as pure surface protection devices is limited on account of their tensile strength and above all also by the possible force transmission to the anchoring points. Strong wire rope nets increase the performance for slope stabilizations with greater distances between nails and anchors and are widely used in Europe. However, they are comparatively expensive in relation to the protected surface. Today, special processes enable the production of diagonally structured mesh from high-tensile steel wire. These mesh provide tensile strengths comparable to wire rope nets. The interaction of mesh and fastening to nail / anchor has been investigated in comprehensive laboratory tests. This also in an effort to find a suitable fastening plates which allows an optimal utilization of the strength of the mesh in tangential (slope-parallel) as well as in vertical direction (perpendicular to the slope). The trials also confirmed that these new mesh, in combination with suitable plates, enable substantial pretensioning of the system. Such pretensioning increases the efficiency of the protection system. This restricts deformations in the surface section of critical slopes which might otherwise cause slides and movements as a result of dilatation. Suitable dimensioning models permit to correctly dimension such systems. The new mesh with the adapted fastening elements have already been installed in first pilot projects in Switzerland and Germany and provide useful information on handling and effects.

  • PDF

The Convergence of Accuracy Ratio in Finite Element Method (유한요소법의 정도수렴)

  • Cho, Soon-Bo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.85-90
    • /
    • 2003
  • If we use a third order approximation for the displacement function of beam element in finite element methods, finite element solutions of beams yield nodal displacement values matching to beam theory results to have no connection with the number increasing of elements of beams. It is assumed that, as the member displacement value at beam nodes are correct, the calculation procedure of beam element stiffness matrix have no numerical errors. A the member forces are calculated by the equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$, the member forces at nodes of beams have errors in a moment and a shear magnitudes in the case of smaller number of element. The nodal displacement value of plate subject to the lateral load converge to the exact values according to the increase of the number of the element. So it is assumed that the procedures of plate element stiffness matrix calculations has a error in the fundamental assumptions. The beam methods for the high accuracy ratio solution Is also applied to the plate analysis. The method of reducing a error ratio of member forces and element stiffness matrix in the finite element methods is studied. Results of study were as follows. 1. The matrixes of EI[B] and [K] in the equations of M(x)=EI[B]{q} and M(x) = [K]{q}+{Q} of beams are same. 2. The equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$ for the member forces have a error ratio in a finite element method of uniformly loaded structures, so equilibrium node loads {Q} must be substituted in the equation of member forces as the numerical examples of this paper revealed.

  • PDF

A Study on the Engineering Properties of Alluvial clay in the Daebul Reclaimed Tideland (대불간척지 충적점토의 공학적 특성에 관한 연구)

  • 김홍일;진병익;유기송
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 1984
  • This study was made to find several significant relations among various physical and mechanical properties including cone penetration resistance. The alluvial clay samples were taken at the Daebul Reclaimed Tideland in Samhomyeon, Yeongamgun, Jeonranamdo. The results of the study are summarized as follows; 1.Most samples belong to medium or high plastic, inorganic, silty clay(clay contents;32-64%, silt contents; 36-68%, sand contents; 0-3%). The specific gravities range from 2.70 to 2.73, the unit weights from 1.45 to 1. 75g/cm$^3$, the natural moisture contents from 45 to 77%, the liquid limits from 32 to 56%. It is certain that the foundation is weak because the natural moisture contents are much higher than the liquid limits. 2.It is known from the shear tests that the unconfined compression strenghs vary from 0.09 to 0. 38kg/cm2, the cohesions from 0.05 to 0. 21kg/cm2, the internal friction angles from 0 to 3˚. 3.The consolidation tests show that the initial void ratios range from 1.25 to 2.28, the compression indeices from 0.43 to 0.84, the preconsolidation loads from 0.21 to 0.74kg/cm$^2$. 4.Cone penetration resistances are usually less than 5kg/cm$^2$ from ground surface to the depth of about 8m, and from S to l0kg/cm$^2$ in the layer below about 8m to hard layer. 5.The cohesion and cone penetration resistance are in proportion to the depth of soil layer. 6.The correlations between various physical and mechanical properties including cone penetration resistance for the alluvial clay samples are as follows; a) Wn=0.944C+ l2.733 (r=0.829) b) LL=0. 728Cy+6. 991 (r=0. 873) c) PI=0.659Cy-8.168 (r=0.860) d) rt=0. 0077(272-Wn) =2.092-0. 0077Wn (r=0. 859) e) 60=0. 035wn-0 447 (r=0. 893) f) C=0.380qw+0.031 (r=0.816) g) qu=0.0707qc+0.029 (r=0.810) h) C=0.018Z+0.055 (r=O.802) I) qc=0. 415Z+1, 438 (r=0. 943)

  • PDF

Structural analysis of Kick Motor support cone structure (KSLV-1 킥모터지지부 콘 구조물 구조 해석)

  • An, Jae-Mo;Kim, Gwang-Su;Jang, Yeong-Sun;Lee, Yeong-Mu
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.159-165
    • /
    • 2006
  • In this study, structural analysis is executed about cone structure of KSL V-1 2nd stage KMS(kick motor support structure) which is designed for support the load developed from 2nd stage kick motor. KMS is consisted of cone structure and truss structure which is designed for supporting load developed from 2nd stage payload. Applied loads to cone structure are tension load by inertia developed from kick motor and compression load developed from kick motor. Also, shear and bending load are developed according to flight condition. In this study, structural analysis of cone structure is executed under several load condition which may be applied to cone structure. Also, structural analysis with two finite element model is performed according to pressure vent scheme. In result of structural analysis, critical load condition is equivalent tension load with cut-out.

  • PDF

Driveability Analysis of Non Welding Composite Pile (무용접 복합말뚝의 항타관입성 분석에 관한 연구)

  • Shin, Yun-Sup;Kim, Nam-Ho;Boo, Kyo-Tag;Lee, Jong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.729-737
    • /
    • 2008
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile foundation is more to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in civil or architectural construction, steel pile is largely used with its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is about the Composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile simultaneously while preserving the advantage of steel pile that large resistance to horizontal force and bending moment. A Non Welding connection method is applied to this composite pile and this method could reduce the cost and period of construction and could increase the quality of construction by solving the problem of current welding method and by improving the workability of pile connection. In this study, characteristics of driveability of non welding composite pile is analyzed prior to main project while the purpose of main project is proving the applicability of Non Welding Composite Pile by conducting various kind of loading test to analyze the characteristics behaviour of Non Welding Composit Pile and by verifying stability of non welding connection pile.

  • PDF