• Title/Summary/Keyword: shear loads

Search Result 1,148, Processing Time 0.03 seconds

Comparison of Performance between Regular Drilled Shaft and Isolation Tube Drilled Shafts (일반 현장 타설 말뚝과 분리형 현장 타설 말뚝의 거동 비교)

  • Kim, Myung-Hak;O'Neill, Michael W.
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.211-220
    • /
    • 2000
  • An experimental study that included detailed observation of four 305-mm-diameter drilled shafts, one reference shaft of standard design and three test shafts with isolation tubes to mitigate skin friction in the vadose zone of a clay soil profile, is described. The shafts were loaded only by naturally expanding and contraction soil over a period of 17 months. The soil at the test site was instrumented to track suction and elevation changes. Maximum ground surface movements exceeding 40 mm were observed. Heave movements of less than 1.5 mm were observed in the test shafts with isolation tubes, while movements of 5 mm were observed in the reference shaft. Unit side shear loads in the shafts protected by the isolation tubes were minimal compared to those measured in the reference shaft. This indicates that the isolation tubes were very effective.

  • PDF

Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions (인장 및 압축영역에서 콜드조인트 콘크리트의 염화물 확산계수 평가)

  • Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.481-488
    • /
    • 2016
  • Concrete member has been subjected to dead and live loads in use, and the induced stress can affect not only structural but also durability behavior. In mass concrete construction, construction joint are required, however cold joint usually occur due to poor surface treatment and delayed concrete placing. The concrete with joint is vulnerable to both shear stress and chloride ingress. This paper presents a quantitative evaluation of cold joint and loading conditions on chloride diffusion behavior. With increasing tensile stress from 30% to 60%, chloride diffusion coefficient gradually increases, which shows no significant difference from result in the sound concrete. However chloride diffusion coefficient under 30% level of compressive stress significantly increases by 1.70 times compared with normal condition. Special attention should be paid for the enlarged diffusion behavior cold joint concrete under compressive stress.

Seismic Performance of Post Tensioned Flat Plate Structures according to Slab Bottom Reinforcement (하부 철근 유무에 따른 포스트 텐션 플랫 플레이트 골조의 내진성능 평가)

  • Han, Sang-Whan;HwangBo, Jin;Ryu, Jong-Hyuk;Park, Young-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.11-17
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned flat plate structures with or without slab bottom reinforcement. For this purpose, 3 and 9 story frames were designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study was an analytical model that is able to represent punching shear failure and fracture mechanism. The analytical results showed that the seismic performance of a post-tension flat plate is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in a PT flat plate frame, lateral strength and max drift capacity are significantly increased.

Modeling of Damage Initiation in Singly Oriented Ply Fiber-Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링)

  • 남현욱;변현중;정성욱;한경섭
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • Modeling of damage initiation in singly oriented ply (SOP) Fiber Metal Laminate (FML) under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for th\ulcorner modeling of damage initiation in SOP FML. The failure indices (FI) of the fiber prepreg and the metal laminate were calculated by using the Tasi-Hill failure criterion and the Miser yield criterion, respectively. To verify the present method, the failure analysis was conducted under uniaxial loading and cylindrical bending, then the analysis under concentrated load was conducted. The results show that the analysis is reasonable. An indentation test was conducted to compare a damage initiation load with a calculated FI. The test was conducted under two side clamped conditions to study the fiber orientation effect. Indentation curve was fitted using the Hertz equation and a damage initiation load is defined that the point which deviate the fitted curve from the real indentation curve. The damage initiation loads were obtained under various fiber orientations and compared with calculated FIs. The experiment was well matched with calculated FI. This results shows that the present method is suitable for the damage initiation modeling of SOP FML.

  • PDF

Forces and Displacements of Highrise Braced Frames with Facade Riggers (여러개의 파사드리거를 갖는 고층구조물의 응력과 변위)

  • Yuk, Min-Hye;Jung, Dong-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • In the conventional outrigger system, the outriggers are located in the planes of the core walls and this system has disadvantage of obstructing flexibility in the interior layout. But thc facade riggers in the structure uc located In the exterior frames in the direction of the lateral loading. The interaction between the traced frames and facade riggers is through the floor diaphragms adjacent to the chords of the riggers. This paper presents an approximate analysis technique lot preliminary analysis of multiple facade rigger stiffened braced frames in tall buildings subjected to uniformly and triangularly distributed loads as well as a lateral point load at the top of the structure. Comparisons with the results by the program MIDAS for the structural models have shown that this analysis can give reasonably accurate results for highrise braced frames with multiple facade riggers. The method allows a simple procedure for obtaining the optimum level of the facade riggers in addition to a rapid assessment of the influence of the facade riggers on the performance of the highrise structure such as the reduction in lateral deflection at the top and the overturning moment at the base of the braced frame.

Optimum Rigger Locations for Highrise Braced Frames with Facade Riggers (여러 개의 파사드리거를 갖는 고층구조물에서 리거의 최적위치)

  • Jung, Dong-Jo;Yuk, Min-Hye;Lim, Byung-Taeg;Kim, Seok-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.137-146
    • /
    • 2007
  • Numerical analyses are performed to show the effect of stiffening facade riggers on the behavior of the structure and to investigate the optimum locations of facade riggers. Optimum locations of the facade riggers to minimize the drift at the top of the structure are obtained by maximizing the drift reduction caused by the facade riggers and are significantly influenced by the bending and shear stiffnesses of the braced frame and facade riggers. Three standard load cases of uniformal and triangularly distributed lateral loads as well as a lateral point load at the top of the structure are considered in this paper Optimum locations of facade riggers are plotted as functions of nondimensional relative stiffness parameters ${\omega}$ and ${\beta}$ for structures with one to four riggers. Although the analysis presented herein is based on certain simplifying assumptions, it is believed that the results do provide sufficiently accurate information for determining the optimum locations of facade riggers in highrise structures.

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

Three dimensional modelling of ancient colonnade structural systems subjected to harmonic and seismic loading

  • Sarhosis, V.;Asteris, P.G.;Mohebkhah, A.;Xiao, J.;Wang, T.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.633-653
    • /
    • 2016
  • One of the major threats to the stability of classical columns and colonnades are earthquakes. The behavior of columns under high seismic excitation loads is non-linear and complex since rocking, wobbling and sliding failure modes can occur. Therefore, three dimensional simulation approaches are essential to investigate the in-plane and out-of-plane response of such structures during harmonic and seismic loading excitations. Using a software based on the Distinct Element Method (DEM) of analysis, a three dimensional numerical study has been performed to investigate the parameters affecting the seismic behaviour of colonnades' structural systems. A typical section of the two-storey colonnade of the Forum in Pompeii has been modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The model is then used to compare the results between 2D and 3D simulations emphasizing the different response for the selected earthquake records. From the results analysis, it was found that the high-frequency motion requires large base acceleration amplitude to lead to the collapse of the colonnade in a shear-slip mode between the drums. However, low-frequency harmonic excitations are more prominent to cause structural collapse of the two-storey colonnade than the high-frequency ones with predominant rocking failure mode. Finally, the 2D analysis found to be unconservative since underestimates the displacement demands of the colonnade system when compared with the 3D analysis.

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing (PHC말뚝과 확대기초 연결방법에 따른 접합부 거동)

  • Bang, Jin-Wook;Oh, Sang-Jin;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 2016
  • The pile-cap connection part which transfers foundation loads through pile body is critical element regarding flexural and shear force because the change of area, stress, and stiffness occurs in the this region suddenly. The purpose of this study is to investigate the structural behavior of pile-cap connection dependent on fabrication methods using conventional PHC pile and composite PHC pile. A series of test under cyclic lateral load was performed and the connection behavior was discussed. From the test results, it was found that the initial rotational stiffness of pile-cap connection was affected by the length of pile-head inserted in footing and the location of longitudinal reinforcing bars. The types of pile and location of longitudinal reinforcing bars governed the behavior of pile-cap connection regarding load-carrying capacity, ductility, and energy dissipation.