• Title/Summary/Keyword: shear key

Search Result 576, Processing Time 0.03 seconds

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.

Key factors affecting the shear behaviour of exterior RC beam-column joints

  • Ricardo, Costa;Paulo, Providencia
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.353-367
    • /
    • 2023
  • An extended parametric study based on nonlinear finite element analyses is performed to assess the key factors affecting the shear behaviour of exterior beam-column joints of unbraced reinforced concrete frames. Extensive results are presented, the major conclusion being that the few shear behaviour models for exterior reinforced concrete beam-column joints available in the literature do not properly account for some of the most influential factors. The present results are also compared with recently published results for interior joints, showing that while some factors have a similar influence on interior and exterior joints others are relevant for only one of these types of joints. This also confirms, numerically, that some resisting mechanisms of exterior joints differ from those of interior joints.

Dynamic Analysis for Base Isolated Structure with Shear Keys (쉬어키를 가진 면진건축물의 동적해석)

  • Han, Duck-Jeon;Kim, Tae-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.45-53
    • /
    • 2007
  • Recently, high-rise base isolated building structures with shear keys are often constructed in Japan which frequently occurs earthquakes. High-rise buildings are less damaged because those buildings have longer natural period than md or low rise buildings. The shear key is device that prevents the base isolators operating by the wind loads not by the earthquake loads. In case of big base shear force acts on the shear keys by earthquake, this device is broken and base isolator is operated. Therefore, seismic intensities play a role in acting on the shear keys. If wind loads are hither than the earthquake loads, the shear keys designed by wind loads are not operated in earthquakes. So, the requirements of shear keys in high-rise base isolated building structures must be examined in Korea with moderate seismic legions. In this study shear keys are applied with 5 and 15 stories base isolated building structures and investigated their dynamic responses to original and 1/2 scale downed El Centre NS(1940) ground motions. The results show that the yield shear forces of the shear keys affect significantly the dynamic behavior of base isolated building structures

  • PDF

Shear Behavior Characteristics of Interface between Two Concrete-blocks (콘크리트 블록 접촉면의 전단특성)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2008
  • Shear tests were carried out on interface between two concrete eco-blocks which comprise segmental retaining wall. Three interface conditions were considered : 1) direct contact of two blocks, 2) placing rubber pad between two blocks, 3) placing rubber pad and shear key between two blocks. According to shear tests, shear load-shear displacement relationship which was obtained from direct contact of two blocks was similar to elastic-perfectly plastic behavior. Ductile behavior of shear load-shear displacement relationship was observed for the interface condition of placing rubber pad. Apparent minimum shear capacities and apparent friction angles for the interface conditions of direct contact of two blocks, placing rubber pad between two blocks, placing rubber pad and shear key were 1.7 kN/m, $27.6^{\circ}$ and 4.2 kN/m, $26.2^{\circ}$ and 20.9 kN/m, $26.0^{\circ}$ respectively.

Shear Modeling Tests for Post-Tensioned Composite Segmental Beams (세그멘탈 합성보 접합부 전단 모델 시험)

  • 설동재;김인규;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.481-486
    • /
    • 2002
  • A precast concrete beam which is larger than the limits of domestic transportation regulation in weight, length, and volume is divided into three parts, transported separately, and erected with a composite beam by post-tensioning in site. Shear tests are performed on the post-tensioned composite segmental beam models with 1/2 scale. The jacking force and the ratio of area of shear key to beam section are major experimental variables. Nine shear strength are resulted from the tests with two variables. Rational equation for estimation of shear strength are obtained from the regression analysis on test results.

  • PDF

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.611-620
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results shows that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilize in failure process. Also the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear test tensile strength was increased by increasing the layer thickness.

Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.507-517
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly punch shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear punch test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear punch test tensile strength was increased by increasing the layer thickness.

Numerical simulations of fracture shear test in anisotropy rocks with bedding layers

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Nejati, Hamid Reza
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • In this paper the effect of bedding layer on the failure mechanism of rock in direct shear test has been investigated using particle flow code, PFC. For this purpose, firstly calibration of pfc2d was performed using Brazilian tensile strength. Secondly direct shear test consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and rock bridge length was 10 mm, 40 mm and 60 mm. In each rock bridge length, bedding layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally 21 models were simulated and tested. The results show that two types of cracks develop within the model. Shear cracks and tensile cracks. Also failure pattern is affected by bridge length while shear strength is controlled by failure pattern. It's to be noted that bedding layer has not any effect on the failure pattern because the layer interface strength is too high.