Browse > Article
http://dx.doi.org/10.12989/acc.2019.7.4.241

Numerical simulations of fracture shear test in anisotropy rocks with bedding layers  

Haeri, Hadi (State Key Laboratory for Deep GeoMechanics and Underground Engineering)
Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
Zhu, Zheming (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University)
Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
Publication Information
Advances in concrete construction / v.7, no.4, 2019 , pp. 241-247 More about this Journal
Abstract
In this paper the effect of bedding layer on the failure mechanism of rock in direct shear test has been investigated using particle flow code, PFC. For this purpose, firstly calibration of pfc2d was performed using Brazilian tensile strength. Secondly direct shear test consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and rock bridge length was 10 mm, 40 mm and 60 mm. In each rock bridge length, bedding layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally 21 models were simulated and tested. The results show that two types of cracks develop within the model. Shear cracks and tensile cracks. Also failure pattern is affected by bridge length while shear strength is controlled by failure pattern. It's to be noted that bedding layer has not any effect on the failure pattern because the layer interface strength is too high.
Keywords
direct shear test; anisotropy; bedding layer; tensile crack; PFC2D;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.   DOI
2 Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46, 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.   DOI
3 Bewick, R.P., Kaiser, P.K. and Bawden, W.F. (2013), "DEM simulation of direct shear: 2. Grain boundary and mineral grain strength component influence on shear rupture", Rock Mech. Rock Eng., 47(5), 1673-1692. https://doi.org/10.1007/s00603-013-0494-4.   DOI
4 Bewick, R.P., Kaiser, P.K., Bawden, W.F. and Bahrani, N. (2013), "DEM simulation of direct shear: 1. Rupture under constant normal stress boundary conditions", Rock Mech. Rock Eng., 47(5), 1647-1671. https://doi.org/10.1007/s00603-013-0490-8.   DOI
5 Cai, M. and Kaiser, P.K. (2004), "Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks", Int. J. Rock Mech. Min. Sci., 41, 478-483.   DOI
6 Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29, 47-65.   DOI
7 Dan, D.Q., Konietzky, H. and Herbst, M. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010.   DOI
8 Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solid., 22, 1205-1218. https://doi.org/10.1177/1081286515625436.   DOI
9 Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001.   DOI
10 Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45, 677- 693. https://doi.org/10.1007/s00603-012-0233-2.   DOI
11 Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4.   DOI
12 Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.   DOI
13 Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6.   DOI
14 Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinica., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.   DOI
15 Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939.   DOI
16 Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016b), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinica., 5, 555-566. https://doi.org/10.1016/S0894-9166(16)30273-7.
17 Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions, Problem Solving with PFC2D, Version 3.1, Itasca Consulting Group Inc., Minneapolis.
18 Khanlari, G., Rafiei, B. and Abdilor, Y. (2014), "An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones", Rock Mech. Rock Eng., 48(2), 843-852. https://doi.org/10.1007/s00603-014-0576-y.   DOI
19 Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 2014, Article ID 156926, 8. http://dx.doi.org/10.1155/2014/156926.
20 Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046.   DOI
21 Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measur., 82, 421-431. https://doi.org/10.1016/j.measurement.2017.04.002.   DOI
22 Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002.   DOI
23 Liu, Y.S., Fu, H.L., Rao, J.Y., Dong, H. and Cao, Q. (2012), "Research on Brazilian discsplittingtestsfor anisotropyof slateunder influenceofdifferent bedding orientation", Chin. J. Rock Mech. Eng., 31, 785-791. (in Chinese)   DOI
24 Liu, Y.S., Fu, H.L., Rao, J.Y., Dong, H. and Zhang, H.M. (2013), "Tensile strength of slate based on Hoek-Brown criterion", Chin. J. Rock Mech. Eng., 35, 1172-1177. (in Chinese)
25 Liu, Y.S., Fu, H.L., Wu, Y.M., He, Y.W. and Dong, H. (2013), "Study on Brazilian splitting test for slate based on single weak plane theory", J. China Coal Soc., 38, 1775-1780. (in Chinese)
26 Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037.   DOI
27 Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005   DOI
28 Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002.   DOI
29 Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions", Geosystem. Eng., 18, 1-28. https://doi.org/10.1080/12269328.2014.998346.   DOI
30 Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.   DOI
31 Sarfarazi, V. and Haeri, H. (2016), "A review of experimental and numerical investigations about crack propagation", Comput. Concrete, 18(2), 235-266. http://dx.doi.org/10.12989/cac.2016.18.2.235.   DOI
32 Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://dx.doi.org/10.12989/acc.2015.3.4.269   DOI
33 Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2013), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.   DOI
34 Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739.   DOI
35 Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034.   DOI
36 Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failureof layered sandstone under Braziliantest conditions", Int. J. Rock Mech. Min. Sci., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001.   DOI
37 Tavallali, A. and Vervoort, A. (2013), "Behaviour of layered sandstone under Brazilian test conditions: Layer orientation and shape effects", J. Rock Mech. Geotech. Eng., 5, 366-377. https://doi.org/10.1016/j.jrmge.2013.01.004.   DOI
38 Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015.   DOI
39 Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Procedia- Soc. Behav. Sci., 198, 2280-2289. https://doi.org/10.1016/j.sbspro.2015.06.317.
40 Wang, T., Xu, D., Elsworth, D. and Zhou, W. (2016c), "Distinct element modeling of strength variation in jointed rock masses under uniaxial compression", Geomech. Geophys. Geo-Energy Geo-Resour., 2, 11-24. https://doi.org/10.1007/s40948-015-0018-7.   DOI
41 Wasantha, P., Ranjith, P., Zhang, Q. and Xu, T. (2015), "Do joint geometrical properties influence the fracturing behaviour of jointed rock? An investigation through joint orientation", Geomech. Geophys. Geo-Energy Geo-Resour., 1, 3-14. http://dx.doi.org/ 10.1007/s40948-015-0001-3.   DOI
42 Wu, W., Wang, G.B. and Mao, H.J. (2010), "Investigation of porosity effect on mechanical strength characteristics of dolostone", Rock Soil Mech., 31, 3709-3714.   DOI