• Title/Summary/Keyword: shear force

Search Result 2,584, Processing Time 0.047 seconds

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

An Iterative Scheme for Resolving Unbalanced Forces Between Nonlinear Flexural Bending and Shear Springs in Lumped Plasticity Model (비선형 휨 및 전단 힌지 사이의 불평형력 해소를 위한 수렴계산 기법)

  • Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-235
    • /
    • 2022
  • For a member model in nonlinear structural analysis, a lumped plastic model that idealizes its flexural bending, shear, and axial behaviors by springs with the nonlinear hysteretic model is widely adopted because of its simplicity and transparency compared to the other rigorous finite element methods. On the other hand, a challenging task in its numerical solution is to satisfy the equilibrium condition between nonlinear flexural bending and shear springs connected in series. Since the local forces between flexural and shear springs are not balanced when one or both springs experience stiffness changes (e.g., cracking, yielding, and unloading), the additional unbalanced force due to overshooting or undershooting each spring force is also generated. This paper introduces an iterative scheme for numerical solutions satisfying the equilibrium conditions between flexural bending and shear springs. The effect of equilibrium iteration on analysis results is shown by comparing the results obtained from the proposed method to those from the conventional scheme, where the equilibrium condition is not perfectly satisfied.

Evaluation of Interface Shear Properties Between Geosynthetics and Soils Through Inclined Board Tests (경사판 시험을 통한 토목섬유와 흙의 접촉 전단 특성 평가)

  • 서민우;신준수;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.285-298
    • /
    • 2003
  • Shear properies of geosynthetic/geosynthetic and geosynthetic/soil interfaces which are widely met in landfill sites were evaluated from the inclined board tests. The inclined board testing apparatus is known to reproduce the shear behavior on the low normal stress most accurately. In this study, the friction angle of each interface was estimated and the tensile force mobilized at the geosynthetic was measured as well. The test results showed that the friction angle of each interface and the tensile force of the geosynthetics depended on the amount of normal stress, the type of the geosynthetics used, and the combinations of geosynthetics and soils. In addition, the sand/geotextile/geomembrane interface system was simulated in this study, and it was observed that the tensile force developed at the geomembrane decreased due to the protection effect of the geotextile located above the geomembrane. The test results of this research was compared with those of direct shear tests published, too. Finally, by comparing the measured tensile force of the geosynthetics when the initial displacement of the box occurs, when the slope is called as the critical slope, with suggested analytic solution, the accuracy of analytic solution and the applicability to design were identified.

On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR (구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Bae, Sang-Don
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.

A Study on the Prediction of End Milling Cutting Force by Tensile Test (인장실험을 통한 엔드밀링 작업에서의 절삭력 예측에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.257-262
    • /
    • 1999
  • On End Milling Process predict the cutting force is important. Dynamics the shear stress is the main parameter influencing the energy requirement in machining. It is well known that a nonzero force is obtained when cutting forces measured at different feed rates but otherwise constant cutting conditions are extrapolated to zero feed rate. In this paper, the cutting force measured in end-milling is compared with the simulated force models. The result show that stress measured in cutting is consistent with that stresses predicted.

  • PDF

Design of RC dual system building using special seismic detail (내진특수상세를 적용한 RC 이중골조 건물의 설계)

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.190-193
    • /
    • 2006
  • The definition of the Dual system is that the total seismic force resistance is to be provided by the combination of the moment frame and the shear walls or braced frames in proportion to their stiffness and the moment frame shall be capable of resisting at least 25% of the design force in Korean Building Code 2005 (KBC 2005). But, the definition of moment frame is ambiguous whether the moment frame include the imaginary columns in the shear wall (Case I) or include only the columns outside the shear wall (Case II). 60-story RC building was designed as dual system for Case I and Case II, and the required strength and reinforcement are compared. Moment and axial capacity of the shear wall of Case II decreased about 5% due to the absence of the column in the shear wall. The requirement of upper and bottom reinforcement of slab in Case II increased 13% and 40%, respectively, when compared to those of Case I. The required longitudinal reinforcement in columns for Case II is about 1.5 times larger than that of Case I.

  • PDF

The Shear and Friction characteristics Analysis of Inconel 718 End-millingIusing Equivalent Oblique Cutting System -Up endmilling- (등가경사절삭 시스템에 의한 Inconel 718 앤드밀링 공정의 전단 및 마찰특성 해석I -상향 엔드밀링-)

  • 이영문;최원식;송태성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.887-890
    • /
    • 2001
  • In end milling process the underformed chip thickness and the cutting force components very periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying underformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting mode. According to this analysis, when cutting Inconel 718.61% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

The Shear and Friction characteristics Analysis of End-milling (엔드밀링의 전단특성 및 마찰특성 해석)

  • Lee, Y.M.;Song, T.S.;Shim, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.724-729
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

The Shear and Friction Characteristics Analysis of End-Milling (엔드밀링의 전단특성 및 마찰특성 해석)

  • Lee, Yeong-Mun;Song, Tae-Seong;Sim, Bo-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1520-1527
    • /
    • 2001
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.