• Title/Summary/Keyword: shear flow

Search Result 1,884, Processing Time 0.029 seconds

SHAPE OPTIMIZATION OF THE AIRFOIL-GUIDE VANES IN THE TURNING REGION FOR A ROTATING TWO-PASS CHANNEL (곡관부 열전달 성능 강화를 위한 에어포일형 가이드 베인의 형상 최적설계)

  • Moon, M.A.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents the numerical simulation results of heat transfer and friction loss for a rotating two-pass duct with the airfoil-guide vanes in the turning region. The Kriging model is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow field and heat transfer with shear stress transport turbulent model. To improve the heat transfer performance, angle and location of the airfoil-guide vanes have been selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weight factor. The airfoil-guide vanes in the turning region keep the high level of heat transfer while the friction loss has a low value. By comparing the presence or absence of airfoil-guide vanes, it is shown that the airfoil-guide vanes exhibited the best heat transfer performance to improve the blade cooling except the first passage.

Direct Numerical Simulation of the Lock-on Phenomena in the Wake behind a Circular Cylinder in a Perturbed Flow at Re=360 (Re=360에서 교란유동장에 놓인 원형실린더 후류의 유동공진 현상에 대한 직접수치해석)

  • Park, Ji-Yong;Kim, Soo-Hyeon;Bae, Joong-Hun;Park, No-Ma;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.780-789
    • /
    • 2007
  • Lock-on phenomenon in the wake of a circular cylinder is investigated at the Reynolds number of 360 using direct numerical simulation (DNS). To induce lock-on, a streamwise velocity perturbation with a frequency of twice the natural shedding frequency is superimposed on the free stream velocity. The Reynolds stress distributions are investigated to analyze the streamwise force balance acting on the recirculation region and the results are compared with the previous experimental result. When the lock-on occurs, the pressure force on the recirculation region is shown to increase mainly due to the reversal of the Reynolds shear stress distribution, which is consistent with our previous results using PIV measurement. It is also shown that, with the lock-on, the strength of the primary vortices increases whereas that of the secondary vortices decreases significantly. Further, under the lock-on condition the wavelength of the secondary vortices increases by as much as 2.5 times.

PLIF and PIV Measurements of Jet Flames with Acoustically Forced Coaxial Air Jets

  • Han Jeong Jae;Kim Munki;Yun Sang Wook;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • Acoustic excitations were imposed to coaxial air jet of non-premixed jet flame with hydrogen gaseous injected axially in the center of the flow. The frequencies of excitation were three dominant resonant frequencies at 1L, 2L, 3L. modes including specially 514 Hz (2L-mode) which was estimated theoretically as longitudinal mode of combustor characteristics. The mixing enhancement by acoustic forcing has been investigated quantitatively using PLIF and PIV. The effect of acoustic excitation on combustion process was significant to enhance mixing rate that coincides with specific resonant frequencies. And the behavior of vortex-interaction on flame structure was a good evidence to investigate the phenomenon of shear/mixing layer of fuel-air jet structure. The results obtained in this study concludes that generated streamwise vortex by acoustic excitation has a potential to enhance the mixing rate and abating NOx emissions.

  • PDF

Optical Detection of Red Blood Cell Aggregation in a Disposable Microfluidic Channel

  • Shin Sehyun;Jang Ju-Hee;Park Myung-Soo;Ku Yunhee;Suh Jang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.887-893
    • /
    • 2005
  • The aggregability of red blood cells (RBCs) was determined by laser backscattering light analysis in a microfluidic channel. Available techniques for RBC aggregation often adopt a rotational Couette-flow using a bob-and-cup system for disaggregating RBCs, which causes the system to be complex and expensive. A disposable microfluidic channel and vibration generating mechanism were used in the proposed new detection system for RBC aggregation. Prior to measurement, RBC aggregates in a blood sample were completely disaggregated by the application of vibration-induced shear. With the present apparatus, the aggregation indexes of RBCs can be measured easily with small quantities of a blood sample. The measurements with the present aggregometer were compared with those of LORCA and the results showed a strong correlation between them. The aggregability of the defibrinogenated blood RBCs is markedly lower than that of the normal RBCs. The noble feature of this design is the vibration-induced disaggregation mechanism, which can incorporate the disposable element that holds the blood sample.

Analysis of Undertow Using$\textsc{k}-\varepsilon$ Turbulence Model ($\textsc{k}-\varepsilon$ 난류 모형을 이용한 해향저류의 해석)

  • Hwang, Seung-Yong;Lee, Kil-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.357-368
    • /
    • 1993
  • With the assumption of the diffusion dominated flow, a numerical model has been developed for undertow and turbulence structure under the breaking wave by using the $textsc{k}$-$\varepsilon$ turbulence model. Undertow is a strong mean current which moves seqwards below the level of wave trough in the surf zone. The turbulence, generated by wave breaking in the roller, spreads and dissipates downwards. The governing equations are composed of the equation of motion with the period-averaged shear stress due to waves; $textsc{k}$- and $\varepsilon$-equations with the turbulence energy Production due to wave breaking. They are discretised by the three-level fully implicit scheme, which can be solved by using Thomas algorithm. The model gives good agreements with measurements except for the station that is closest to the breaking point.

  • PDF

A Study on the Characteristics and Property of Gravure Off-set Printing Conductive Paste for Touch Panel by Ag Powder Characteristic (Ag 파우더 특성에 따른 터치 패널용 그라비어 오프셋 인쇄의 전도성 페이스트의 제조 및 물성 연구)

  • Song, Jae-Hyung;Jang, Ah-Ram;Kim, Sung-Bin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.45-58
    • /
    • 2011
  • Gravure off-set printing recently is used in electronics display market. This method has advantages of mass production and high printing speed. It is also fine pattern can be implemented. We have manufactured low-curable conductive Ag pastes for gravure off-set printing. When printing, the pastes be used different silver powder shape because of the printing characteristics. The pastes were prepared with silver powder by silver powder shape and size, epoxy resin, solvent and homogenized on a standard three-roll mill. And the pastes exhibited a shear-thinning flow at viscosity profile. Moreover the adhesive strength and resistivity of silver film had a good characteristics. With the manufactured paste in this study, touch panel had is manufactured and it had $4{\times}10-5{\Omega}.cm$.

Numerical studies of the suppression of vortex-induced vibrations of twin box girders by central grids

  • Li, Zhiguo;Zhou, Qiang;Liao, Haili;Ma, Cunming
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.305-315
    • /
    • 2018
  • A numerical study based on a delayed detached eddy simulation (DDES) is conducted to investigate the aerodynamic mechanism behind the suppression of vortex-induced vibrations (VIVs) of twin box girders by central grids, which have an inhibition effect on VIVs, as evidenced by the results of section model wind tunnel tests. The mean aerodynamic force coefficients with different attack angles are compared with experimental results to validate the numerical method. Next, the flow structures around the deck and the aerodynamic forces on the deck are analyzed to enhance the understanding of the occurrence of VIVs and the suppression of VIVs by the application of central grids. The results show that shear layers are separated from the upper railings and lower overhaul track of the upstream girder and induce large-scale vortices in the gap that cause periodical lift forces of large amplitude acting on the downstream girder, resulting in VIVs of the bridge deck. However, the VIVs are apparently suppressed by the central grids because the vortices in the central gap are reduced into smaller vortices and become weaker, causing slightly fluctuating lift forces on the deck. In addition, the mean lift force on the deck is mainly caused by the upstream girder, whereas the fluctuating lift force is mainly caused by the downstream girder.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

Characterization of Physiological Changes in $S3H5/\gamma{2bA2}$ Hybridoma Cells During Adaptation to Low Serum Media

  • Lee, Gyun-Min;Joanne, Savinell
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.141-151
    • /
    • 1992
  • Physiological changes of the murine hybridoma cell line $S3H5/\gamma{2bA2}$ during adaptation to RPMI 1640 medium with 1%(v/v) fetal bovine serum were characterized in terms of cell growth, antibody production, morphology, and metabolic quotients. Cells adapted to 1% serum medium in T-flasks became sensitive to shear induced by mechanical agitation and required at least 5% serum in the medium or spent medium for cell growth in spinner flasks, while cells adapted to 10% serum medium in T-flasks could grow in 1% serum medium in spinner flasks. Consequently, long-term adaptation to low serum media may not give the expected growth enhancement. After adaptation to 1% serum medium, changes in cell morphology were observed. The cells in 10% serum medium were uniform and circular, while cells in 1% medium were irregularly shaped. The DNA contents, which were measured by flow cytometry, were almost constant among the cells in the range of 1% to 10%. Further, no significant changes in energy metabolism and specific monoclonal antibody production rate were observed among these cells.

  • PDF

Topical Gel Formulations of Epidermal Growth Factor and Their Wound Healing Effects (상피세포 성장인자를 함유한 외용 겔 제제의 특성 및 창상 치유 효과)

  • Lee, Jeong-U;Kim, Hui-Jun;Jo, Seong-Wan;Park, Jun-Sang;Choe, Yeong-Uk
    • YAKHAK HOEJI
    • /
    • v.40 no.4
    • /
    • pp.411-417
    • /
    • 1996
  • Epidermal growth factor(EGF), a potential healing agent for wounds and burns, has been formulated to topical gels with the hydrophilic polymers, Carbopol 934P. Physicochemical c haracteristics of the aqueous gels were evaluated by rheological properties and pH changes on storage. The gels were relatively stable at $4^{\circ}C$ and room temperature showing no changes in pH for two weeks, and revealed the rheogram of shear thinning plastic flow with the yield values in the range of 40 to 70dyne/$cm^2$. In vivo healing effects of different gel formulations have been compared with water-soluble and oleaginous ointments in full-thickness wound mouse model. The gel systems resulted in better wound healing effects than the other ointments. Furthermore, liposomal Carbopol gel has been developed by the addition of EGF-containing liposomal suspension into the Carbopol gel. The enhanced wound healing effects have been observed in the liposomal gel system, compared to the other gels and conventional ointments.

  • PDF