• Title/Summary/Keyword: shear capacity

Search Result 1,931, Processing Time 0.026 seconds

Evaluation of the Bending Properties of Glulam with Different Cross-Section (집성재 단면구성에 따른 휨성능 평가)

  • Lee, Jun-Jae;Kim, Kwang-Mo;Han, Jae-Su;Kim, Jae-Keon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.65-71
    • /
    • 2003
  • In this paper, bending capacities of glulams with different configurations of cross-section were evaluated. These configurations included horizontal(BH), vertical(BVN), vertical with vertical plywood (BVV) and vertical combination of lamination with horizontal plywood(BVH). Full-scale bending tests were performed to investigate the effect of different section configurations on bending strength(MOR) and stiffness(MOE) of glulam. Compared with type BH, MOR of glulam with type BVN configuration was improved about 23%, which was considered to be caused by defect dispersion effect, while MOE of glulams with these two types of configurations were similar. Because MOE of plywood is generally smaller than that of solid wood laminar, MOE of type BVH glulam decreased about 15%, but in the case of type BVV glulam, MOR was improved without any reduction of MOE. The reason of this result could be undersood in the view of shear-reinforcement effect, which was verified from analysis of fracture mode. From the results of this study, it was concluded that bending capacity of glulam could be improved by proper section design, such as laminar arrangement and shear reinforcement.

Evalution for Joints of Coastal Environments Blocks (Coastal Environments 블록 적용을 위한 연결부 강도평가)

  • Kim, Chun-Ho;Kim, Kwang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.176-182
    • /
    • 2009
  • Other damage can occur due to the preexisting dull structure and installation of nonenvironmental-friendly concrete structure, lack of function for preventing coastal erosion. Increase of personal income and fast spread of the concept of waterfront casued the initiation of many project to improve aging coastal ports. However, none of environment-friendly structure has been developed and pre-existing solid block, igloo block, tunnel block are used commonly. In piers and lighter's wharf where the ships are mooring, resonance by the generation of a reflected wave caused by penetration wave in the port and port wave increases wave heights in the port and makes difficult to maintain the temperature, causes problems in mooring ships and cargo-working, and eventually increase the occurance of damages of the small ships by the collision. Therefore, development of new types of blcok is necessary. To apply Coastal Environments block developed for this reason, it requires allowable bearing capacity evaluation of shear key. For this study, we made test specimen for connecting part of C.E. Block, and conducted friction test of boundary surface. Data obtained by the experiment was analyzed by finite element analysis and assessed the coefficient of friction between C.E. Block and boundary surface.

Comparison of the Meat Quality Characteristics among Commercial Broiler, Korean Hanhyup 3 and Organic Chicken (상업용 일반육계, 국내 토종닭, 유기농 육계의 닭고기 육질 비교 분석)

  • Soyoung Jang;Youngho Lim;Taeyeon Moon;Yang-il Choi;Jungseok Choi
    • Korean Journal of Poultry Science
    • /
    • v.51 no.3
    • /
    • pp.145-151
    • /
    • 2024
  • This study was conducted to compare the meat quality characteristics of organic chicken and conventional chicken meat based on traditional meat products such as broilers and Korean native chickens. There were a total of 3 treatment groups: commercial broilers, Korean hanhyup-3 broiler (HH3), Korean organic chickens (KOC), consisting of chicken breast and thigh meat. For the comparison of chicken meat quality, proximate composition (moisture, crude protein, crude fat, crude ash), pH, water holding capacity (WHC), cooking loss (CL), drip loss, shear force and color were analyzed, and sensory evaluation was conducted. KOC showed higher moisture content compared to broilers and lower crude protein content compared to HH3 (P<0.05). KOC exhibited the highest pH among the three breeds, resulting in higher WHC and lower CL (P<0.05). In terms of shear force, higher values were observed in HH3 and KOC compared to broilers (P<0.05). KOC showed higher redness, while lower lightness and yellowness were observed in chicken thigh meat (P<0.05). Sensory evaluation revealed HH3 thigh meat had the highest overall preference.

Framed Steel Plate Wall subject to Cyclic Lateral Load (주기하중을 받는 골조강판벽의 실험연구)

  • Park, Hong Gun;Kwack, Jae Hyuk;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.781-792
    • /
    • 2004
  • Experiments were performed to study the cyclic behavior of framed steel walls with thin web plates. Five specimens of single-bay and three-story steel plate walls were tested for cyclic lateral load. The parameters for the test specimens included the plate thickness and the column strength. Based on the test results, the strength, deformability, and energy dissipation capacity of the framed steel walls were studied. The test results showed that the behavioral characteristics of the framed steel walls with thin web plates were different in many aspects from those of the conventional braced frame, and the steel wall with a stiffened web plate exhibited cantilever action, high strength, and low ductility. With the framed steel plate walls, local plate buckling and tension-field action developed in the thin web plates, and plastic deformation was uniformly distributed along the wall's height. As a result, the framed steel plate walls exhibited combined flexural and shear deformation, but they also showed high strength and energy dissipation capacity. Moreover, such walls have high deformability, which was equivalent to that of the conventional moment frame. Frame members such as columns and beams, however, must be designed to resist the tension-field action of the thin web plates. If the column does not have sufficient strength, and if its sections are not compact enough, the overall strength of the framed steel wall might be significantly decreased by the development of the soft-story mechanism. The framed steel walls with thin web plates have advantages, such as high deformability and high strength. Therefore, they can be used as ductile elements in earthquake-resistant systems.

Experimental Study on Flexural Capacity of Precast Steel Mesh Reinforced Mortar Panel (프리캐스트 스틸메쉬 보강 모르타르 패널의 휨 성능에 대한 실험적 연구)

  • Yi, Na Hyun;Kim, Jang Ho Jay;Lee, Sang Won;Kim, Tae Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.10-19
    • /
    • 2013
  • Recently, researches related to precast modular construction have been actively conducted for nuclear power plant, LNG gas tank, and small-medium PCCV as well as bridges and buildings. In this study, the precast panel cast with steel mesh reinforced mortar (SRM) which is similar reinforced ferrocement was developed for efficient precast construction, construction time reduction, and easy transportation. Mortar mixture with high strength and flowability was obtained from various case studies using silica fume and GGBS. Also, $1,200{\times}600{\times}150mm$ SRM and reinforced concrete (RC) panels were manufactured with reinforcing ratio of 2% and 4%. To verify structural performance of the SRM specimen, the basic material tests, free shrinkage test, and 3-point flexural test with a line loading were carried out. From the test results, it was determined that SRM specimens showed outstanding flexural capacity and ductility. However, the 4% reinforced SRM specimens must consider shear reinforcing to be used as a precast modular member.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Adhesive Strength and Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2Electrodes with Lean Binder Composition (바인더 함량에 따른 Li(Ni0.5Co0.2Mn0.3)O2 전극의 접착력 및 전기화학 성능에 관한 연구)

  • Roh, Youngjoon;Byun, Seoungwoo;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.3
    • /
    • pp.47-54
    • /
    • 2018
  • To maximize the areal capacity($mAh\;cm^{-2}$) of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$(NCM523) electrode with the same loading level of $15mg\;cm^{-2}$, three NCM523 electrodes with 4, 2, and 1 wt% poly(vinylidene fluoride)(PVdF) binder content are fabricated. Due to the delamination issue of electrode composite at the edge during punching process, the 1 wt% electrode is excluded for further evaluation. When the PVdF binder content decreases from 4 to 2 wt%, both adhesion strength and shear stress decrease from 0.4846 to $0.2627kN\;m^{-1}$ by -46% and from 3.847 to 2.013 MPa by -48%, respectively. Regardless of these substantial decline of mechanical properties, their initial electrochemical properties such as initial coulombic efficiency and voltage profile are almost the same. However, owing to high loading level, the 2 wt% electrode not only exhibits worse cycle performance than the 4 wt% electrode, but also cannot maintain its mechanical integrity only after 80 cycles. Therefore, if the binder content is reduced to increase the area capacity, the mechanical properties as well as the cycle performance must be carefully evaluated.

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.

Assessment of System Reliability and Capacity-Rating of Concrete Box-Girder Highway Brdiges (R.C 박스거교의 체계신뢰성 해석 및 안전도 평가)

  • 조효남;신재철
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.187-198
    • /
    • 1995
  • This paper develops practical and reallstic reliabllity models and methods for the evaluation of system rehability and system rellabllity based ratlng of R.C box glrder bridge superstructures. The precise prediction of reberved carrying capacity of bridge as d system is extremely difficult especially when the brldges are highly redundant and slgnlficantly deter 1or;itcd or dainagetl. Thls papel proposes a nt2w approach for the evaluation of reseived system c,drrying capaaty of br~dges in terms ot equ~vdleiit system strength, which may b~ ddcflned as a brtdge system strength correipcmdlng tu the system rehability of the bridge. This cm be ticrAvcd from an Inverse process bami or1 the con~ept of FOSM(F1rst Order Second Moment) form of system reliabihty index. The sf rength llmt state models for K C box girder br~dges suggested In the paper dre based on the basi~ bending and shear strength And thc system reliatxllty pro,~lerri of box gritier super structure 1s formuldted as parallel serles models obtalncd f ~ o m thc FMA(Fdilure blode Rp proath) based on major failure mc>clmusrns or c~itlcal fdure ,>tatcs of each nuder .WOSM(Ad-vanced First Order Second Moment) and IST(1mportance Sampling Technique) simulation algorithm are used for the reliability analysis of the proposed models.